Elimination of Cusps in a Free Boundary Problem for Water Waves

Sean McCurdy

National Taiwan Normal University

The Euler Equations, Velocity Form

In 2-dimensions, $\vec{v}(x, y, t) = (v_1(x, y, t), v_2(x, y, t))$

 $\begin{aligned} \partial_t \vec{v} + (\vec{v} \cdot \nabla) \vec{v} + \nabla p &= 0 \\ & \text{div}(\vec{v}) &= 0 \\ (v_1)_y - (v_2)_x &= 0 \\ & \vec{v} \cdot \vec{\eta_D} &= \text{normal speed of } \partial D(t). \\ & p \text{ is locally constant on } \partial D(t). \end{aligned}$

Bernoulli Principle

$$p + \frac{1}{2} |\nabla u|^2 + gy$$
 is constant in D

Normalizing, we obtain the following Bernoulli-type free-boundary problem.

$$\begin{cases} \Delta u &= 0 \quad \text{in } \{u > 0\} = D \subset R \\ u &= 0 \quad \text{on } \partial D \cap R \\ |\nabla u|^2 &= -y \quad \text{on } \partial D \cap R. \end{cases}$$
(1)

- 1847 Stokes conjectures the existence of an extreme wave with peak angle $2\pi/3$.
- 1880 Stokes gives a formal argument justifying his conjecture [Sto09].
- 1961 Krasovskiĭ [Kra61] and Keady and Norbury [KN78] prove the existence of smooth waves of large amplitude.
- 1978 Toland [Tol78] and McLeod [McL97] proved the existence of extreme periodic waves, of infinite and finite depth.
- 1982 Plotnikov [Plo82] and Amick, Fraenkel, and Toland [AFT82] independently prove the Stokes conjecture under the assumptions:
 - The stagnation point is isolated.
 - ∂D is symmetric.
 - ∂D is monotone.
 - ∂D is the graph of a function.
 - The stream function *u* is increasing in *y*.

< 回 > < 回 > < 回 > .

- 2011 Varvaruca and Weiss introduced the "geometric approach" to the study of the Stokes Wave, and generalized the free-boundary problem to $n \ge 2$.
 - Monotonicity formula: the Weiss $\frac{3}{2}$ -density.

$$W_{\frac{3}{2}}(x_0, r, u) = \frac{1}{r^{n-2+2(\frac{3}{2}))}} \int_{B_r(x_0)} |\nabla u|^2 + x_n^{2(\frac{3}{2}-1)} \chi_{\{u>0\}} dx$$
$$- \frac{\frac{3}{2}}{r^{n-1+2(\frac{3}{2})}} \int_{\partial B_r(x_0)} u^2 d\sigma.$$

- Blow-ups.
- Geometric Measure Theory.

Theorem ([VW11], Proposition 5.5 and Proposition 5.8)

Let $n \ge 2$, and let u is a weak solution to (1) satisfying $|\nabla u|^2 \le C|x_n|$ locally in $D \subset \mathbb{R}^n$. Define,

$$S := \{ x \in \{ x_n = 0 \} \cap \partial D : 0 < \lim_{r \to 0} \frac{\mathcal{H}^n(B_r(x) \cap \{ u > 0 \})}{\omega_n r^n} < \frac{1}{2} \}$$
$$S_{\frac{1}{2}} := \{ x \in \{ x_n = 0 \} \cap \partial D : \lim_{r \to 0} \frac{\mathcal{H}^n(B_r(x) \cap \{ u > 0 \})}{\omega_n r^n} = \frac{1}{2} \}.$$

Then, $S \cup S_{\frac{1}{2}}$ satisfies $\dim_{\mathcal{H}}(S \cap S_{\frac{1}{2}}) \leq n-2$. Furthermore, if n = 2, then S is locally isolated and every point in S satisfies the Stokes conjecture.

Theorem ([VW11] Lemma 4.4)

If n = 2 and u is a weak solution to (1) satisfying $|\nabla u|^2 \le |x_n|$ locally in $D \subset \mathbb{R}^n$ then $S_0 = \emptyset$, where

$$S_0 := \{x \in \{x_n = 0\} \cap \partial D : \lim_{r \to 0} \frac{\mathcal{H}^n(B_r(x) \cap \{u > 0\})}{\omega_n r^n} = 0\}.$$

- Do cusps happen?
- How do we get information about solutions near cusps?

Bernoulli-type Free-boundary Problems

$$\begin{cases} \Delta u = 0 & \text{in } \{u > 0\} \cap \Omega \subset \mathbb{R}^n \\ |\nabla u(x)| = Q(x) & x \in \partial \{u > 0\} \cap \Omega \\ u = u_0 & \text{on } \partial \Omega, \end{cases}$$

arise as the Euler-Lagrange Equations for functionals of the form

$$\mathcal{J}_{\Omega}(u, Q) := \int_{\Omega} |\nabla u(x)|^2 + Q^2(x)\chi_{\{u>0\}}(x)d\mathcal{H}^n(x).$$

The Comparison Principle

Theorem ([AC81] Lemma 3.2)

Let u be a local minimizer of $\mathcal{J}_Q(\cdot, B_2(0))$. There is a constant, $C_{max}(n) > 0$ such that for every ball, $B_r(x) \subset B_2(0)$, if

$$\frac{1}{r^{n-1}}\int_{\partial B_r(x)}ud\sigma>C_{max}r\cdot\max_{y\in B_r(x)}Q(y),$$

then u > 0 in $B_r(x)$.

Theorem ([AC81] Lemma 3.4)

Let u be an ϵ_0 -local minimizer of $\mathcal{J}_Q(\cdot, \Omega)$. Let $s \in (0, 1)$ be fixed. Then, for all $0 < r \leq \frac{1}{2}r_0$ and all $B_{2r}(x_0) \subset \Omega$, there is a constant $C_{\min} = C(n, s)$ such that if

$$\frac{1}{r^{n-1}}\int_{\partial B_r(x_0)} ud\sigma \leq rC_{\min}\min_{y\in B_{sr}(x_0)}\{Q(y)\},$$

then u = 0 on $B_{sr}(x_0)$.

- [AL12] Investigated absolute minimizers of $\mathcal{J}_{\Omega}(u, Q)$ (under appropriate boundary data) and obtain a "local" analog of [KN78]. But, they are unable to obtain a Stokes wave.
- [GL18] Investigated absolute minimizers of $\mathcal{J}_{\Omega}(u, Q)$ (under appropriate boundary data) and obtain non-flat profiles in dimensions $n \ge 2$ and arbitrary exponent.

Theorem ([McC20])

Let $0 \le k \le n - 1$. Let $\Gamma \subset \mathbb{R}^n$ be a k-dimensional (1, M)- $C^{1,\alpha}$ submanifold such that $0 \in \Gamma$, and let $0 < \gamma$. Let $Q(x) = dist(x, \Gamma)^{\gamma}$, and let u by a local minimizer of $\mathcal{J}_{B_2(0)}(\cdot, Q)$.

Then, $\{u > 0\} \cap B_1(0)$ is a set of finite perimeter. In particular, the "cusp" set S_0 has \mathcal{H}^{n-1} -measure zero.

Instead of looking for an analytic tool to apply at the tip of a cusp, let's examine the geometric behaviour of solutions near the tip of a cusp.

Growth of Harmonic Functions

Definition

Property P Let $u: B_2^n(0,0) \to \mathbb{R}^+$ be continuous. For an integer $N \in \mathbb{N}$, a ball $B_r^n(x,0) \subset B_2^n(0,0)$, is said to satisfy Property P with constant N if

$$B_r^k(x) \times B_{\frac{2r}{N}}^{n-k}(0) \cap \{u > 0\}$$

has a component $\ensuremath{\mathcal{O}}$ which satisfies the following conditions.

(Upper Height Bound)

$$\sup_{0\leq \rho\leq r}\sup\{|y|: (x',y)\in \mathcal{O}, |x'-x|=\rho\}\leq \frac{r}{N}.$$

(Lower Height Bound)

$$\inf_{0 \le \rho \le r} \sup\{|y| : (x', y) \in \mathcal{O}, |x' - x| = \rho\} \ge \frac{r}{N4 \cdot 2^{1+\gamma}}$$

The contradiction

Let $0 < \epsilon_0$, and let n, k be integers such that $n \ge 2$ and $0 \le k \le n-1$. Let $\Gamma = \{(x, 0) \in \mathbb{R}^k \times \mathbb{R}^{n-k}\}$, and $0 < \gamma$. Let $Q(x, y) = |y|^{\gamma}$. If u is an ϵ_0 -local minimizer of $J_Q(\cdot, B_N^n(0, 0))$ and $B_N^n(0, 0)$ has Property P with constant N, then

() By Free-boundary estimates, for all $1 \le r \le N$

$$\int_{\partial B_r(x)} u^2 \approx_{n,\gamma} 1.$$

By Harmonic estimates,

$$\int_{\partial B_R(x)} u^2 d\sigma \geq \left(\frac{R}{r}\right)^{n-1} \int_{\partial B_r(x)} u^2 d\sigma.$$

Theorem (McCurdy-Naples 2021)

Let $0 < \epsilon_0$, and let n, k be integers such that $n \ge 2$ and $0 \le k \le n - 1$. Let $\Gamma = \{(x, 0) \in \mathbb{R}^k \times \mathbb{R}^{n-k}\}$, and $0 < \gamma$. Let $Q(x, y) = |y|^{\gamma}$. If u is an ϵ_0 -local minimizer of $J_Q(\cdot, B_2^n(0, 0))$, then $S_0 = \emptyset$.

What about Critical Points?

The Divergence Theorem

If u is a weak solution to (1), this assumes some regularity on $\partial \{u > 0\}$ away from $\{y = 0\}$ which implies

$$\int_{\partial \mathcal{O} \cap [-1,1]^2} \nabla u \cdot \eta d\sigma = - \int_{\mathcal{O} \cap \partial [-1,1]^2} \nabla u \cdot \eta d\sigma$$

What about Critical Points? Ingredient 2

If *u* is a weak solution to (1), (*x*, 0) is a cusp point, and (*x*, 0) $\in \partial \mathcal{O}$ then for every $0 < C_2 \leq 1$ there is a rescaling $\mathcal{O}_{(x,0),\rho}$ such that

$$\int_{\partial \mathcal{O}_{(x,0),\rho} \cap [-1,1]^2} |x_2|^{\gamma} d\sigma \ge \int_{\mathcal{O}_{(x,0),\rho} \cap \partial [-1,1]^2} \frac{1}{6C_2} |x_2|^{\gamma} d\sigma.$$

Theorem (McC22)

Let $C < \infty$, and u is a weak solution to (1) satisfying $|\nabla u|^2 \le Cx_2^+$ locally in $D \subset \mathbb{R}^2$. Then,

- $S_0 = \emptyset$.
- No point of S can also be a cusp point.

Thank you

Sean McCurdy Elimination of Cusps in a Free Boundary Problem for Water Waves

э

Bibliography

H. W. Alt and L. A. Caffarelli. Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math., 325:105–144, 1981. C. J. Amick, L. E. Fraenkel, and J. F. Toland. On the Stokes conjecture for the wave of extreme form. Acta Math., 148:193-214, 1982. D. Arama and G. Leoni. On a variational approach for water waves. Comm. Partial Differential Equations, 37(5):833–874, 2012. Giovanni Gravina and Giovanni Leoni. On the existence of non-flat profiles for a bernoulli free boundary problem, 2018. Giovanni Gravina and Giovanni Leoni. On the behavior of the free boundary for a one-phase bernoulli problem with mixed boundary conditions, 2019.

G. Keady and J. Norbury.

On the existence theory for irrotational water waves → < = > < = > > = ~ ~ ~