
308 Review

Much of what follows in this “review” will look very new. Some of it will look new
because I am phrasing what you learned in 308 in a different way. Some of it will look new
because it was not taught in your 308 class.

Definition 0.1. A vector space is a triple, (V,+,F), where

1. V is a set, a collection of objects. Objects in V , written

~v ∈ V,

are called vectors.

2. + is an operation which takes two objects in V and produces another object in V . We
write this

+ : V × V → V.

We call this operation addition. This means V must be closed under addition.

3. F is called a scalar field. In this class, F will either be C, the complex numbers, or
R, the real numbers. Recall that we define

C = {a+ ib | a ∈ R, b ∈ R}

Addition of complex numbers follows the rule,

(a+ ib) + (c+ id) = (a+ c) + i(b+ d).

We can multiply complex numbers, as well, by the rule,

(a+ ib) · (c+ id) = ac+ ibc+ iad+ i2bd = (ac− bd) + i(bc+ ad).

4. The set, V , must be closed under scalar multiplication. That is, for all vectors,
~v ∈ V , and all z ∈ F,

z~v ∈ V

5. There must be a special vector, written ~0 ∈ V , which has the property that for any
~v ∈ V ,

~v +~0 = ~v.

6. For each ~v ∈ V , there must exist a vector, −~v such that

~v + (−~v) = ~0.

7. The operation, + and scalar multiplication must satisfy the following properties for all
~x, ~y, ~z ∈ V and all a, b ∈ F
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• (~x+ ~y) = (~y + ~x)

• (~x+ ~y) + ~z = ~x+ (~y + ~z)

• a(~x+ ~y) = a~x+ a~y

• a(b~x) = (ab)~x

• (a+ b)~x = a~x+ b~x

Remark 0.1. Note, that “closed under addition” and “closed under scalar multiplication”
are properties of a set. The set is closed under the operation of addition or scalar
multiplication.

Definition 0.2. Given a vector space, (V,+,F), a subspace of (V,+,F) is a vector space,
(V ′,+,F) such that

V ′ ⊂ V

The operation, +, and the scalar field, F (think R or C), must be the same.

In 308, the only vector spaces you saw were (Rn,+,R) and their subspaces. In this class
we will be dealing with more general vector spaces.

Definition 0.3. Let {~v1, ~v2, ..., ~vn}, be a collection of vectors in a vector space, (V,+,F).
We say that a vector ~v ∈ V is a linear combination of the vectors ~v1, ~v2, ..., ~vn, if there
exist scalars, c1, c2, ..., cn ∈ F such that

~v = c1~v1 + c2~v2 + ...+ cn~vn

If all ci = 0, then ~v = ~0 and we call this the trivial combination. If there exists a
ci 6= 0, then we say that this is a non-trivial combination.

Definition 0.4. The span of a collection of vectors, {~v1, ~v2, ..., ~vn}, is defined as the
following set,

span({~v1, ~v2, ..., ~vn}) = {~v| ~v is a linear combination of {~v1, ~v2, ..., ~vn}}.

The span of any collection of vectors is a subspace.
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Definition 0.5. A collection of vectors, {~v1, ~v2, ..., ~vn}, is called linearly independent if
the only linear combination such that

c1~v1 + c2~v2 + ...+ cn~vn = ~0

is the trivial combination. The collection is called linearly dependent if there exists a
non-trivial combination such that

c1~v1 + c2~v2 + ...+ cn~vn = ~0.

Definition 0.6. Given a vector space, (V,+,F), a collection of vectors, {~v1, ~v2, ..., ~vn} ⊂ V
, is called a basis for (V,+,F) if it satisfies the following two properties,

1. span(~v1, ~v2, ..., ~vn) = V .

2. The collection, {~v1, ~v2, ..., ~vn}, is linearly independent.

The vectors in a basis are called basis vectors.

Once we have a basis for V , it is true that every vector, v ∈ V , can be written as a unique
linear combination of basis vectors.

Definition 0.7. Let B = {~v1, ~v2, ..., ~vn} be a basis for a vector space (V,+,F). For each
~v ∈ V , we define the coordinate vector with respect to the basis B as

~vB =


c1

c2
...
cn


where c1, c2, ..., cn are the coefficients of the unique linear combination such that

~v = c1~v1 + c2~v2 + ...+ cn~vn.

In 308, when we were dealing with Rn, we had always chosen the standard basis. However,
sometimes there is a more convenient basis.
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Definition 0.8. A real-valued (n×m)−matrix is a rectangular array of n rows and m
columns, where all the entries are real numbers. We denote the collection of all such matrices
by,

Mn×m(R) = {A| A is a real-valued (n×m)− matrix}.

A complex-valued (n×m)−matrix is a rectangular array of n rows and m columns,
where all the entries are complex numbers. We denote the collection of all such matrices by,

Mn×m(C) = {A| A is a complex-valued (n×m)− matrix}.

Note that because R ⊂ C, we also have that Mn×m(R) ⊂Mn×m(C).
We shall think of matrices A ∈ Mn×m(C) as rectangular arrays of m columns, each of

which is a coordinate vector in Cn. When we wish to emphasize this perspective, we shall
write

A =
(
~v1 ~v1 · · · ~vm

)
where each ~vi ∈ Cn

Definition 0.9. Let A ∈Mn×m(C) be written as

A =
(
~v1 ~v1 · · · ~vm

)

where each ~vi ∈ Cn. Let ~x ∈ Cm be written as the coordinate vector, ~x =


c1

c2
...
cm

 . We define

matrix-vector multiplication according to the following rule,

A~x = c1~v1 + c2~v2 + ...+ cm~vm

Note that A~x ∈ Cn.

Definition 0.10. Let A ∈Mn×m(C) and B ∈Mm×r(C) where B is written as

B =
(
~b1

~b1 · · · ~br
)

for ~bi ∈ Cm. We define matrix-matrix multiplication according to the following rule,

AB =
(
A~b1 A~b1 · · · A~bm

)
Note that AB ∈Mn×r(C).
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Matrix multiplication is not always commutative. That is, even when it is defined, it
may very well be that AB 6= BA.

Definition 0.11. Consider Rn. Let

B1 = {~bi}ni=1, B2 = {~vi}ni=1

be two different bases for Rn. The change of basis matrix from B1 to B2 is the unique
(n× n)−matrix, S, such that for all ~x ∈ Rn

~xB2 = S~xB1 .

Note that the change of basis matrix, S, is always invertible. If we write out S as a
matrix of column vectors,

S =
(
~s1 ~s2 · · · ~sn

)

then ~si = (~bi)B2 . In other words, ~si =


c1

c2
...
cn

 where the constants ci are the constants of the

unique linear combination such that

~bi = c1~v1 + c2~v2 + ...+ cn~vn.

Reflection Questions

1. Show that (Mn×m(C),+,C) is a vector space where addition is defined by component-
wise addition and scalar multiplication acts by scaling each component. You must use
the definition.

2. Show ((Mn×m(R),+,R)) is a subspace of (Mn×m(C),+,C). Show ((Mn×m(R),+,C))
is a not subspace of (Mn×m(C),+,C) because it is not a vector space.

3. Let
C1([a, b],R) = {f : [a, b]→ R | f ′ is continuous}.

Show that (C1([a, b],R),+,R) is a vector space.

4. Is

1
2
3

 in the span of the collection {

1
2
0

 ,

 0
−3
1

 ,

2
3
1

}?
5. Is the collection {

1
4
0

 ,

10
−3
1

 ,

 2
−6
1

} linearly independent? A basis?
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6. Multiply

1 2 7
2 0 1
0 3 −3

10
0
−2

 .

7. Let B1 = {

1
2
0

 ,

1
0
1

 ,

1
0
3

} and B2 = {

1
1
1

 ,

2
0
2

 ,

0
3
3

}. Find the change of

basis matrix which takes vectors written in B1 and expresses them in B2.

8. For B1 and B2 as above, find the change of basis matrix which takes vectors written in
B2 and expresses them in B1.
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1 Matrices and Eigenstuff

Definition 1.1. Let (X,+X ,F) and (Y,+Y ,F) be vector spaces. A map, f : X → Y is
called linear if and only if for all x1, x2 ∈ X and all c ∈ F,

f(x1 +X cx2) = f(x1) +Y cf(x2).

Examples

1. The function f : R→ R given by the algebraic rule f(x) = 2x is a linear function.

2. The function f : R2 → R given by the algebraic rule f(~x) = ~x · ~y0 is a linear function.

3. Given any interval, [a, b], the operation of taking the anti-derivative is a linear opera-
tion. That is, the map int on functions f defined by

int(f) =

∫ b

a

f(x)dx

is a linear map from integrable functions on [a, b] to R.

4. The operation of taking the derivative is also a linear operation. That is, the map, d
dt

defined by
d

dt
(f) = f ′

is a linear map from the vector space of differentiable scalar-valued functions to the
vector space of scalar-valued functions.

In 308, you studied Linear Transformations, functions T : Rn → Rm which were linear.
In particular you saw the following important idea:

Theorem 1.1. (Representation of Linear Transformations) For every (n×m)−matrix, A,
we can define a linear transformation, T : Rm → Rn, by the rule

T (~x) = A~x

Conversely, for every linear transformation, T : Rm → Rn, there is an (n×m)− matrix,
A, such that

T (~x) = A~x

for all ~x ∈ Rm.
Because of this, we say that the matrix, A, represents the linear transformation,

T , and T acts by multiplication by the matrix A.
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Question 1.1:. Given a linear transformation, T : Rm → Rn, how do we find the matrix
by which represents it? I.e., how do we find the matrix A such that T (~x) = A~x?

Answer: Linear Transformations (and linear maps in general) are nice because the
respect vector space operations like taking linear combinations. For example, if we let
S = {~ei}mi=1 be the standard basis, and ~x =

∑m
i=1 xi~ei, then

T (~x) = T (
m∑
i=1

xi~ei) =
m∑
i=1

xiT (~ei).

This means that linear transformations are completely determined by how they act upon
bases. If we know how a linear transformation acts upon a basis, we know how it acts on
every vector in the span of that basis. Thus, if we let A be the matrix which represents T ,
we see that

A = AIm = A[~e1 · · · ~em]
= [A~e1 · · · A~em]
= [T (~e1) · · · T (~em)].

Note: There are infinitely many bases. The matrix we found above represents T in the
standard basis. T (~x) = A~x only if ~x is written as a coordinate vector with respect
to the standard basis.

That is, for our vector ~x =
∑m

i=1 xi~ei, we write ~x as a coordinate vector with respect to
the standard basis as

~xS =


x1

x2
...
xm


Then, we have that,

T (~x) = T (
m∑
i=1

xi~ei) =
m∑
i=1

xiT (~ei),

and,

m∑
i=1

xiT (~ei) = [T (~e1) · · · T (~em)]

x1
...
xm

 = A~xS .

If we had written ~x as a coordinate vector with respect to a different basis, say, ~x =∑m
i=1 ci

~bi, then

T (~x) = T (
m∑
i=1

ci~bi) =
m∑
i=1

ciT (~bi),
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BUT,

m∑
i=1

ciT (~bi) 6= [T (~e1) · · · T (~em)]

 c1
...
cm

 = A~xB.

Rather, we would have

m∑
i=1

ciT (~bi) = [T (~b1) · · · T (~bm)]

 c1
...
cm

 = B~xB.

Question 1.2:. How do we find a representation of a given a linear transformation,
T : Rm → Rn, in a given basis, B = {~bi}mi=1? I.e., how do we find the matrix M such that
T (~xB) = M~xB

Answer: This question is about change of bases. So, let’s assume that the vectors of the
basis B = {~bi}mi=1 are written out as coordinate vectors with respect to the standard basis.
We already know that if we have a vector in the standard basis then T (~x) = A~x. Thus, we
need only remember what a coordinate vector in the basis B means:

~x =


x1

x2
...
xm


B

= (~b1)S · x1 + (~b2)S · x2 + · · ·+ (~bm)S · xm

Thus, we have that ~xS = [~b1 · · ·~bm]~xB. Hence we need only use the matrix B = [~b1 · · ·~bm]
to change to the standard basis, where we know which matrix represents T , and then B−1

to change back to the basis B. This gives:

T (~xB) = B−1AB~xB

Thus, given any two bases, B1 = {~b1,~b2, ...,~bm} and B2 = {~v1, ~v2, ..., ~vm}, and the change
of basis matrix, B such that

~xB1 = B~xB2 ,

if T acts on coordinated vectors with respect to the basis B1 by the matrix A, then T acts
on coordinate vectors with respect to the basis B2 by the matrix B−1AB.

Question 1.3: Might there be a BEST basis to represent a linear transformation by? If
we want to analyze how a linear transformation acts on a space, is there a basis that makes
it EASY see what is going on?
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Answer: Yes. There is a “best basis” on which T acts simply. Let’s explore this in the
next section.

1.1 Eigenvalues and Eigenvectors

Let’s make life easy and only consider T : Rn → Rn This way, we can view T as
a transformation of Rn, rather than as a map between spaces. Since T is a linear
transformation, we know that it is represented by the action of some matrix, A.

T (~x) = A~x

Question 1.4: If we want to find a basis for Rn on which T acts simply, what might
“simply” mean?

Answer: By the definition of vector spaces, there are only two things we can do with
vectors:

1. We can scale vectors and get another vector.

2. We can add vectors together and get another vector.

The “simplest” is probably just scaling. Therefore, we are looking for vectors, ~x ∈ Rn such
that there is some scalar, λ, for which

T (~x) = λ~x.

This gives rise to the following definitions.

Definition 1.2. An eigenvalue of a matrix, A, is scalar, λ, such that there exists a non-zero
vector for which

A~x = λ~x

Such a non-zero vector, ~x, is called an eigenvector.

Note: Eigenvectors are associated to a particular eigenvalue. A vector cannot be an
eigenvector for two distinct eigenvalues. Further, any scalar multiple of an eigenvector is
also an eigenvector, since

A(c~x) = c(A~x) = c(λ~x) = λ(c~x).

We can rearrange the definition of an eigenvalue to read as follows.
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Definition 1.3. An eigenvalue of a matrix, A, is scalar such that null(A − λI) is non-
trivial. That is, there exist non-zero vectors, ~x, called eigenvectors of A with eigenvalue λ,
such that

(A− λI)~x = ~0.

Definition 1.4. The eigenspace associated to an eigenvalue, λ, of a matrix, A is the space
of all eigenvectors of that eigenvalue, plus the zero vector. That is, it is the set null(A−λI).

Observe that this means that the eigenspace of an eigenvalue is a vector space.

Question 1.5: Ok, now that we know that the vectors we want are called “eigenvectors,”
how do we find them??

Answer: First, we find eigenvalues, and then we find the eigenvectors. Since eigenvalues
are scalars, λ, for which the matrix (A − λI) is NOT invertible, we know that if λ is an
eigenvalue, then

det(A− λI) = 0

Example 1.1: Let A =

(
1 2
0 1

)
. Then,

det(A− λI) = det

(
1− λ 2

0 1− λ

)
= (1− λ)2

Thus, the det(A−λI) = 0 when λ = 1. λ = 1 is our only eigenvalue. To find eigenvectors
associated to λ = 1, we need to find non-zero vectors which satisfy

(A− (1)I)~x =

(
0 2
0 0

)
~x = 0.

By 308 techniques, ~x = c

(
1
0

)
, is a solution for any non-zero scalar, c. Thus, the vector

~x = c

(
1
0

)
, is an eigenvector associated to the eigenvalue λ = 1 for any non-zero scalar, c.
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Definition 1.5. The expression det(A−λI) is called the characteristic polynomial. The
equation det(A− λI) = 0 is called the characteristic equation.

Question 1.6: If we want to find all the eigenvalues, how many eigenvalues can an
(n× n)−matrix have?

Answer: If A is an (n× n)−matrix, then the characteristic polynomial, det(A− λI), is
a polynomial in λ of degree n. Thus, there are n roots. That is, counting multiplicity
there are n solutions to the characteristic equation.

In Example 1.1, λ = 1 was the only eigenvalue, but it occurred as a double root of the
the characteristic polynomial. Because of this, we count it twice. We make this rigorous by
the following definition.

Definition 1.6. Given the characteristic polynomial, det(A − λI), we can factor it into a
product of monomials,

det(A− λI) = (λ− λ1)m1 · (λ− λ2)m2 · · · (λ− λj)mj

where each of the λ1, λ2, ...., λj are distinct.
The algebraic multiplicity of an eigenvalue, λi, is the power, mi, which shows up in this

factorization of the characteristic polynomial. It is the “number of times” λi is a root of the
characteristic polynomial. We will often denote the algebraic multiplicity of an eigenvalue,
λ, of A by mλ.

Observation: For an (n×n)−matrix, A, if m1,m2, ...,mj are the algebraic multiplicities
of the distinct eigenvalues of A, then

j∑
i=1

mi = n.

Question 1.7: If we want to find eigenvectors associated to an eigenvalue, how large
can the eigenspace of an eigenvalue be?
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Definition 1.7. If A is an (n × n)−matrix and λ is an eigenvalue of A, then we know
that (A − λI) is not invertible. The nullity of (A − λI), written nullity(A − λI), is the
geometric multiplicity of λ. For a given eigenvalue, λ, of a matrix A we will often denote
the geometric multiplicity by qλ.

Answer: It is a fact that for every eigenvalue, λ,

1 ≤ qλ ≤ mλ.

That is, the dimension of the eigenspace of an eigenvalue can be anywhere between 1 and
the algebraic multiplicity of that eigenvalue.

The geometric multiplicity tells us how many linearly independent eigenvectors are as-
sociated to a given eigenvalue. Since we want to find a basis of eigenvectors, this number is
very important. It gives rise to the following definitions.

Eigenvalues and their multiplicities tell us a lot about a matrix, and hence a lot about
linear transformations. Because they are so important, we classify matrices according to
their multiplicities.

Definition 1.8. A square matrix, A, with the property that for every eigenvalue qλ = mλ

is called diagonalizable.

Definition 1.9. A square matrix, A, for which there is an eigenvalue for which qλ < mλ is
called defective.

1.2 Jordan Normal Form

So what was the point? Remember, we are trying to find a basis for Rn such that our
linear transformation T : Rn → Rn, acts by scaling, because scaling is simple and easy to
understand. In such a basis (if it can be found) the matrix which represents T should be
very simple and easy to analyze.

Let us suppose that an (n× n)−matrix, A, is diagonalizable. Then,

j∑
i=1

qi =

j∑
i=1

mi = n.
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Thus, we can find n linearly independent vectors, {~ξ1, ~ξ2, ..., ~ξn}, where each vector is an
eigenvector of A. I claim that this is the “best” basis in which to view the linear transfor-
mation represented by A Let’s see why in an example.

Example 1.2. Let A =

 2 −2 1
−1 3 −1
2 −4 3

 represent a linear transformation,

T : R3 → R3,

in the standard basis. That is, for all vectors ~x ∈ R3, if we write ~x as a coordinate vector
with respect to the standard basis,

~x = x1~e1 + x2~e2 + x3~e3 =

x1

x2

x3


S

,

then T (~x) =

 2 −2 1
−1 3 −1
2 −4 3

x1

x2

x3


S

.

Let’s find a better basis, a basis of eigenvectors of A, and see what T is represented by
in that basis!

To do this, we need to find eigenvalues and eigenvectors. We begin with the characteristic
polynomial, det(A− λI) = (λ− 1)2(λ− 6).

To find eigenvectors, we solve (A − λI)~x = 0. For λ = 1, we get ~ξ1 =

2
1
0

 and

~ξ2 =

−1
0
1

 . For λ = 6, we get ~ξ3 =

 1
−1
2

.

It is easy to check that {~ξ1, ~ξ2, ~ξ3} are linearly independent. This is left to the reader.

So, I claim that T is represented in the basis B = {~ξ1, ~ξ2, ~ξ3} by a simple matrix. Let J
be the matrix which represents T in the basis B.

What is this matrix J? Let’s check by calculating J directly! In the basis, B =
{~ξ1, ~ξ2, ~ξ3}, the linear transformation T is represented by some matrix, J . That means that
if we write a vector, ~x ∈ R3 as a coordinate vector in the basis, B,

~x = x1
~ξ1 + x2

~ξ2 + x3
~ξ3 =

x1

x2

x3


B

,
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then we have that

T (~x) = T (x1
~ξ1 + x2

~ξ2 + x3
~ξ3)

= x1T (~ξ1) + x2T (~ξ2) + x3T (~ξ3) (1)

= x1A~ξ1 + x2A~ξ2 + x3A~ξ3 (2)

= x1(1)~ξ1 + x2(1)~ξ2 + x3(6)~ξ3 (3)

=

1 0 0
0 1 0
0 0 6

x1

x2

x3


B

. (4)

Thus, J =

1 0 0
0 1 0
0 0 6

. Which is MUCH simpler than A, as promised.

Or, we could have remembered our answer to Question 1.2. That is, we could just do a
change of basis transformation:

J =
(
~ξ1

~ξ2
~ξ3

)−1

A
(
~ξ1

~ξ2
~ξ3

)
.

For ease of computation, we rearrange the equation:(
~ξ1

~ξ2
~ξ3

)
J = A

(
~ξ1

~ξ2
~ξ3

)
=

(
(1)~ξ1 (1)~ξ2 (6)~ξ3

)
=

(
~ξ1

~ξ2
~ξ3

)1 0 0
0 1 0
0 0 6

 .

Thus, if A is diagonalizable, we can do a change of basis transformation,

A = SJS−1

where S is a matrix whose columns are a basis of eigenvectors and J is a diagonal matrix
with the eigenvalues on the diagonal.

Note: Note that J acts by scaling the components. This makes sense because T acts be
scaling the eigenvectors. Also, the form of J is very special. It is block diagonal, and the
eigenvalues occur on the diagonal as many times as their algebraic multiplicities.
This will come up again, later.

Question 1.8: What if A is defective?
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Answer: If A is defective, then there exists at least one eigenvalue λ for which qλ < mλ.
Hence,

j∑
i=1

qi <

j∑
i=1

mi = n.

Consider our earlier example A =

(
1 2
0 1

)
. We could only find one linearly independent

eigenvector.
Thus, T is a linear transformation represented in some basis by the action of A, if A is

defective, then we cannot find a basis of eigenvectors. Observe that if we cannot
find a basis of eigenvectors, then we cannot find a basis in which the linear transformation,
T , is represented by a diagonal matrix. But, if we cannot represent T by a diagonal matrix,
we can represent it by an almost diagonal matrix.

The idea is very much the same: we want to choose a basis in which the action of T is
simple. Eigenvectors, which T just rescales, are still the best. But if A is not diagonalizable,
we cannot find enough of them. Thus, we need some extra vectors on which T acts in a
simple way to complete our basis.

Question 1.9: What is another simple way in which T can act on a vector?

Answer: The other “simple” way to act on a vector was to add some other vector to it.
So, if we collect as many linearly independent eigenvectors as we can find, say, {~ξ1, ~ξ2, , ~ξm},
and we cannot find another vector, ~η, such that A~η = λ~η AND the collection, {~ξ1, ~ξ2, , ~ξm, ~η}
is linearly independent, perhaps we could find a vector, ~η, such that

A~η = λ~η + ~x

and the collection, {~ξ1, ~ξ2, , ~ξm, ~η} is linearly independent.

Question 1.10: What ~x should we choose for A~η = λ~η + ~x?

Answer: We could choose any ~x, but we since we already have eigenvectors, and we
know that T acts simply on them, it is natural to see what happens if we try to find ~η such
that

A~η = λ~η + ~ξ

for ~ξ an eigenvector associated to the eigenvalue, λ.
Notice that we can rearrange this equation to read,

(A− λI)~η = ~ξ.
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If we multiply both sides of the equation by the matrix, (A− λI), we see that ~η satisfies,

(A− λI)2~η = (A− λI)~ξ = ~0

This gives rise to the following definitions.

Definition 1.10. A generalized eigenvector of order m of an eigenvalue, λ, of a matrix,
A, is a non-zero vector, ~η, such that

(A− λI)m~η = ~0

but
(A− λI)m−1~η 6= ~0

In practice, if might be very difficult to compute (A− λI)m and (A− λI)m−1.

Definition 1.11. A Jordan Chain of length m associated to an eigenvalue, λ, of the
matrix A is an ordered collection of m generalized eigenvectors, {~ξ, ~η, ...., ~ρ, ~ν} such that

(A− λI)~ν = ~ρ
...

(A− λI)~η = ~ξ

(A− λI)~ξ = ~0

.

From the definitions, it is clear that ~ξ is an eigenvector, ~η is a generalized eigenvector of
order 2, ~ρ is a generalized eigenvector of order m − 1, and ~ν is a generalized eigenvector of
order m.

The “best” basis that we are looking for will consist of eigenvectors and
generalized eigenvectors arranged in a sequence of Jordan chains.

We saw above that for diagonalizable matrices, we can do a change of basis and represent
them by a diagonal matrix. Let’s see what happens for defective matrices.

Example 1.3 Let’s return to our previous example, a linear transformation represented

in the standard basis by the matrix A =

(
1 2
0 1

)
. As we already saw, A has one eigenvalue,

λ = 1, with algebraic multiplicity 2. Let our eigenvector associated to λ = 1 be ~ξ =

(
1
0

)
.
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To complete the basis, we need to build a Jordan chain of length 2 off of ~ξ. That is, we
need to solve (A− (1)I)~η = ~ξ. (

0 2
0 0

)
~η =

(
1
0

)
.

Thus, we can choose ~η =

(
0

1/2

)
. Thus, our basis is B = {

(
1
0

)
,

(
0

1/2

)
}

By change of basis, then, T is represented in the basis B by the action of the matrix(
~ξ ~η

)−1

A
(
~ξ ~η

)
. Explicitly calculating this matrix, we get,(

~ξ ~η
)
J = A

(
~ξ ~η

)
=

(
A~ξ A~η

)
=

(
(1)~ξ (1)~η + ~ξ

)
=

(
~ξ ~η

)(1 1
0 1

) .

Hence, J =

(
1 1
0 1

)
. Note that even though J is not diagonal, it still is very

simple. It has the eigenvalues on the diagonal and a 1 on the super-diagonal.
Also, it acts simply. In the first coordinate, it simply scales by the eigenvalue 1.(

1 1
0 1

)(
x1

0

)
=

(
(1)x1

0

)
In the second coordinate, it scales the original vector by the eigenvalue 1 and “rotates”

the vector by adding something in the first coordinate.(
1 1
0 1

)(
0
x2

)
=

(
(1)x2

(1)x2

)
This completely describes the action of the linear transformation T . We generalize this

form of matrix with the following defintion.

Definition 1.12. A square matrix, J , is called a Jordan Block if J has the following
properties:

1. J has the same value in all the diagonal entries.

2. All of the entries on the super-diagonal are 1.

3. All the other entries are 0

Examples. The following are Jordan Blocks:

(
5 1
0 5

)
,

0 1 0
0 0 1
0 0 0

,
(
13
)
.
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The following are NOT Jordan Blocks:(
1 2
0 1

)
,

1 1 0
0 1 1
0 0 0

 .

Definition 1.13. Let A be an (n×n)− matrix. The Jordan Form of A is a block-diagonal
(n× n)−matrix with the following properties:

1. Each block on the diagonal is a Jordan block with an eigenvalue of A on the diagonal.

2. Each eigenvalue, λ, has qλ Jordan blocks, arranged adjacently.

3. For each eigenvalue, λ, the sum of the sizes of the Jordan blocks associated to that
eigenvalue adds up to mλ.

4. There is a change of basis matrix, S, such that

AS = SJ

.

Examples. The following are examples of matrices in Jordan Normal Jorm:

(
4 0
0 5

)
,

3 1 0
0 3 0
0 0 −17

 ,


0 1 0 0
0 0 0 0
0 0 −17 0
0 0 0 −17

 .

The following are NOT in Jordan Normal Form:1 0 0
0 2 0
0 0 1

 ,


3 1 0 0
0 3 0 0
0 0 10 0
0 0 1 −17

 .

The Jordan form of a matrix is the “simple” matrix we are looking for.

Question 1.11: So where do Jordan chains come in?

Answer: Each Jordan block in J corresponds to a Jordan chain in S. Consider the
following example. Let the matrix, A, have the Jordan form,

J =

(
λ 1
0 λ

)
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Let ~ξ be an eigenvector of A associated to λ. We know that there is a change of basis matrix,
S, such that AS = SJ . As mentioned, the columns of S will be the “best” basis in which to
represent T . We already know we want ~ξ to be a vector in S, so let us write

S =
(
~ξ ~η

)
and see what properties ~η must have.

On the one hand,

AS = A
(
~ξ ~η

)
=

(
A~ξ A~η

)
=

(
λ~ξ A~η

)
And on the other hand,

SJ =
(
~ξ ~η

)(λ 1
0 λ

)
=

(
λ~ξ λ~η + ~ξ

)
Thus, it must be that A~η = λ~η + ~ξ. Rearranging, we have that (A− λI)~η = ~ξ. Thus, a

(2×2)−Jordan block in J corresponds to a Jordan chain of length 2 in S. The same goes for
larger blocks and chains. A (3 × 3)−Jordan block corresponds to a Jordan chain of length
3, etc.

Putting it all together, if the Jordan form of a matrix, A, has a (1 × 1)−Jordan block,
a (3× 3)−Jordan block, and a (2× 2)−Jordan block down the diagonal, then S has– from
left to right– a Jordan chains of length 1, Jordan chains of length 3, and Jordan chains of
length 2.

Looking at the definition of the Jordan form, we see that for S, each linearly inde-
pendent eigenvector we found will be the base of a Jordan chain, and the sum
of the lengths Jordan chains associated to a given eigenvalue, λ, must add up to
mλ, the algebraic multiplicity of that eigenvalue. Therefore, we only need find
generalized eigenvectors and build Jordan chains for eigenvalues, λ, for which
qλ < mλ.

Question 1.12 Suppose that the Jordan form of a matrix, A, has all (1 × 1)−Jordan
blocks on the diagonal. Is A diagonalizable or defective?

Answer: If J has only (1× 1)−Jordan blocks, then S has only Jordan chains of length
1. Since the first vector on every Jordan chain is an eigenvector, S is only eigenvectors.
Therefore, A must have n linearly independent eigenvectors, and hence A is diagonalizable.
This should make sense because if J has only (1 × 1)−Jordan blocks, then J is a diagonal
matrix!
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1.3 How to find the Jordan Form of a matrix A

In this class we will only do computations with (2× 2) and (3× 3) matrices. This actually
simplifies our work greatly. In fact, to find the Jordan Form of a matrix which is (3× 3) or
smaller, we need only look at the algebraic and geometric multiplicities. To find the change
of basis matrix, S, however, we will need to do a bit of calculation.

Example 1.4 Let A be a matrix with eigenvalues λ = 2 and λ = 5. Let m2 = 1, q2 = 1,
m5 = 2, and q5 = 1.

Since we know that the algebraic multiplicities add up to the size of the matrix, we see
that A must be a (3×3)−matrix. Thus, it’s Jordan Form, J , must also be a (3×3)− matrix.
This Jordan form will have 2 Jordan blocks on the diagonal, because there are only 2 linearly
independent eigenvectors– one associated to λ = 2 and one associated to λ = 5. The sizes of
the blocks associated to a distinct eigenvector must sum up to the algebraic multiplicity of
that eigenvector, so the Jordan block associated to λ = 2 is a (1)−block. The Jordan block
associated to λ = 5 is a (2)−block. Thus, the Jordan Form of A must be either

J =

2 0 0
0 5 1
0 0 5

 or J =

5 1 0
0 5 0
0 0 2

 .

Either is correct. The Jordan Form of a matrix is not unique.

Example 1.5 Let A be a matrix with eigenvalues λ1 = 7 and λ2 = 0. Let m7 = 1,
q7 = 1, m0 = 2, and q0 = 2.

By the same reasoning as before, A must again be a (3 × 3)−matrix. Thus, it’s Jordan
Form, J , must also be a (3 × 3)− matrix. This Jordan form will have 3 Jordan blocks on
the diagonal, because the sum of the geometric multiplicities is 3. That is, we have 3 linearly
independent eigenvectors– one associated to λ = 7 and two associated to λ = 0. The sizes
of the blocks associated to a distinct eigenvector must sum up to the algebraic multiplicity
of that eigenvector, so the Jordan block associated to λ = 7 is a (1× 1)−block. The sizes of
the two Jordan blocks associated to λ = 0 must add up to 2. But there is only one way to
do this, with two (1× 1)−blocks. Thus, the Jordan Form of A must be either

J =

7 0 0
0 0 0
0 0 0

 or J =

0 0 0
0 0 0
0 0 7

 .

Again, either is correct.

If we want to find S, however, we need to know the entries of A and do actual calculations.

Example 1.6 Let T : R3 → R3 be a linear transformation represented by the matrix
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A =

−3 3 6
0 1 2
0 4 −1

 . Find the, J , Jordan Form of A and a basis for R3 in which T (~x) = J~x.

• Step 1: Find the eigenvalues and their algebraic multiplicities. To find eigen-
values, we factor the characteristic polynomial, det(A− λI).

det(A− λI) = (−3− λ)[(1− λ)(−1− λ)− (2)(4)]
= −(λ+ 3)[λ2 − 1− 8]
= −(λ+ 3)2(λ− 3)

.

The eigenvalues are λ = 3 and λ = −3, with algebraic multiplicities 1 and 2, respec-
tively.

• Step 2: Find the eigenvectors. Now we must find non-trivial solutions to (A −
λI)~x = ~0. By 308, this means we need to row-reduce (A− λI).

For λ = 3, we calculate as follows

A− (3)I =

−6 3 6
0 −2 2
0 4 −4


→

−6 0 9
0 −1 1
0 0 0

 .

Since this matrix has one free variable, the geometric multiplicity of λ = 3 is 1. Choose

the eigenvector ~ξ1 =

3
2
2


For λ = −3, we calculate

A− (−3)I =

0 3 6
0 4 2
0 4 2


→

0 2 0
0 0 1
0 0 0

 .

Since this matrix has one free variable, the geometric multiplicity of λ = −3 is 1.

Choose the eigenvector ~ξ2 =

1
0
0

.

• Step 3: Write down the Jordan Form. The previous calculation shows that both
eigenvalues have geometric multiplicity 1. Since the sum of the geometric multiplicities
(1 + 1 = 2) is equal to the number of Jordan blocks in J (since each eigenvector is the
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base of a Jordan chain) we know that there are two Jordan blocks in J . Since λ = −3
has algebraic multiplicity 2, it must show up on the diagonal twice. Thus, we have a
(1 × 1)−Jordan block associated to λ = 3 and a (2 × 2)−Jordan block associated to
λ = −3. Choose

J =

3 0 0
0 −3 1
0 0 −3

 .

• Step 4: Build Jordan chains, if necessary. Since our matrix A is defective, we
need to complete {~ξ1, ~ξ2} into a basis. This means building a Jordan chain off ~ξ2,
because that one is associated to the eigenvalue with qλ < mλ.

Hence, we solve (A− (−3)I)~η = ~ξ2,0 3 6
0 4 2
0 4 2

x1

x2

x3

 =

1
0
0


Row-reducing, we get that x1

x2

x3

 = s

1
0
0

+

 0
−1/9
2/9



Thus, we choose our generalized eigenvector to be ~η =

 0
−1/9
2/9

 .

This gives us two Jordan chains, {~ξ1} and {~ξ2, ~η}.

• Step 5: Put your Jordan chains in the right order. We chose J =

3 0 0
0 −3 1
0 0 −3

 .

Going down the diagonal, we have a (1 × 1)−block and then a (2 × 2)−block. Thus,
to make the equation AS = SJ hold, from left to right, the columns of S must form a
Jordan chain of length 1 and then a Jordan chain of length 2. That is,

A
(
~ξ1

~ξ2 ~η
)

=
(

(3)~ξ1 (−3)~ξ2 (−3)~η + ~ξ2

)
=

(
~ξ1

~ξ2 ~η
)3 0 0

0 −3 1
0 0 −3

 .

With a few caveats, this process generalizes to all (2× 2)− and (3× 3)−matrices. Steps
1 and 2 are always the same for all matrices. As noted earlier, the Jordan Form is not
unique, so there are some choices involved in which Jordan Form you write down for Step 3.
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The Caveats

1. If A is diagonal, then we already found a basis in Step 2, so Step 4 is unneccessary,
since there are no generalized eigenvectors to be found.

2. If A is defective, then things can get a little tricky. We need the lengths of the
Jordan chains of each eigenvalue to sum up to the algebraic multiplicity
of that eigenvalue. Thus, we need only build Jordan chains for eigenvectors, ~ξ,
associated to eigenvalues, λ, with qλ < mλ.

Case 1. If A is a (2 × 2)−matrix, then this is easy. We already have one eigenvector, ~ξ,

and we can always solve (A− λI)~η = ~ξ for ~η.

Case 2. If A is a (3 × 3)− matrix, then there are only a few possibilities. If A has two
distinct eigenvalues, then just as in the example above, it must be that they have
m1 = 1, m2 = 2, q1 = 1, and q2 = 1. We can always solve (A− λI)~η = ~ξ2 for
~η as we did, above.

Case 3. If A has one eigenvalue with m = 3 and q = 1, then we can always build our
Jordan chain by solving

(A− λI)~ξ = 0

(A− λI)~η = ~ξ

(A− λI)~ν = ~η

for ~η and then ~ν.

Case 4. If A has only one eigenvalue with m = 3 and q = 2, however, then things get
tricky. There will only be one eigenvector off of which you can build a Jordan
chain. Further, it is possible to make poor choices of both ~ξ1 and ~ξ2 so
that it will not be possible to solve (A − λI)~η = ~ξ for ~η. Consider the
following example:

A =

1 0 0
0 1 1
0 0 1

 and ~ξ1 =

1
1
0

 and ~ξ2 =

3
1
0

. It is not possible to solve either

0 0 0
0 0 1
0 0 0

 ~η =

1
1
0

 or

0 0 0
0 0 1
0 0 0

 ~η =

3
1
0



In this example, one must choose ~ξ =

0
1
0

 or some scalar multiple of that

eigenvector in order to build a Jordan chain.

In general, if you have chosen poorly, you many need to choose ~η first. That is,
choose any vector outside span{~ξ1, ~ξ2}, let this vector be ~η and then solve for

a new eigenvector by solving (A − λI)~η = ~ξ0 for ~ξ0. This gives a Jordan chain
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of length 2. Choosing whichever vector, ~ξ1 or ~ξ2, is not a scalar multiple of your
new ~ξ0 to be the Jordan chain of length 1 solve the problem. In this class, this
will be very, very rare. Usually, one of the obvious choices for ~ξ1 and
~ξ2 will work.

3. For Step 5, once the Jordan Form you want to use has been chosen, the order of the
Jordan chains in the change of basis matrix S is fixed. Going left to right, then must
correspond in both size and eigenvalue with the Jordan blocks on the diagonal of J ,
otherwise the equation AS = SJ will not hold.

Reflection Questions

1. In your own words, what information do you need in order to write down the Jordan
form of a (2× 2) or (3× 3) matrix?

2. In your own words, what steps do we take to get the information needed in order to
write down the the Jordan form of a (2× 2) or (3× 3) matrix?

3. Let A be a (2 × 2) or (3 × 3) matrix and J the Jordan form of A. In your own
words, what are the steps needed to write down a change of basis matrix, S, such that
AS = SJ?

4. If A is a matrix with two eigenvalues, λ1, with mλ1 = 3 and qλ1 = 3 and λ2, with
mλ2 = 2 and qλ2 = 1. How big is A? How many Jordan blocks will the Jordan form of
A have? How many Jordan chains will S have? How many columns will S have?

5. If AS = SJ for matrices J =

λ1 0 0
0 λ2 1
0 0 λ2

 and S =
(
~ξ1

~ξ2 ~ν
)

. If we choose

a different Jordan form, J̃ =

λ2 1 0
0 λ2 0
0 0 λ1

, what must the corresponding S̃ be if

AS̃ = S̃J̃?

6. If A is diagonalizable, will J be a diagonal matrix?

7. If {~ξ, ~ν} is a Jordan chain associated to an eigenvalue, λ, why must ~ξ and ~ν be linearly
independent?
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2 Introduction to Linear Systems of Ordinary Differ-

ential Equations

In this class we will only be dealing with 1st order linear ODEs. In 308, you spent a lot
of time studying 2nd order linear ODEs. While the techniques you learned are interesting,
there is no need to go beyond 1st order linear ODEs. Every linear ODE of finite order
can be reduced to a 1st order linear system of ODEs.

Example 2.1. Consider a general 2nd order linear ODE: y′′ + b(t)y′ + c(t)y = d(t). By
allowing us to take advantage of the power of vectors and matrices, we can simply let the
first coordinate represent y and the second represent y′. This allows us to write the equation
y′′ + b(t)y′ + c(t)y = d(t) as(

y
y′

)′
=

(
y′

y′′

)
=

(
0 1
−c(t) −b(t)

)(
y
y′

)
+

(
0
d(t)

)
which we may abbreviate as d

dt
~y(t) = A(t)~y(t) + ~g(t)

Recall that matrices and vectors are a book-keeping device to encode systems of equa-
tions. Thus, the above vector-valued differential equation can also be written as a system of
first order ODES:

y′1(t) = y2(t)
y′2(t) = −c(t)y1(t) −b(t)y2(t) +d(t)

Note that the entries of A(t) show up as the coefficients in the system of equations. In
this class, we will only deal with matrices with constant coefficients. That is, we will only
study constant-coefficient linear systems of ODEs.

2.1 Theorems and Definitions

Question 2.1: What does a constant coefficient, 1st order linear system of ODEs look like??

Answer: In general, they look like

d

dt
~x(t) = A~x(t) + ~g(t).

Where ~x(t) and ~g(t) are vector-valued functions,( i.e., vectors whose entries are scalar-
valued functions ) and A is a square matrix with constant entries.
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Definition 2.1. A solution to a constant-coefficient 1st order linear system of
ODEs,

d

dt
~x(t) = A~x(t) + ~g(t),

on the interval (a, b) is a vector-valued function, ~φ(t), such that for all t in the interval

(a, b), ~φ(t) satisfies the equation:

d

dt
~φ(t) = A~φ(t) + ~g(t).

In this class, we will usually only deal with global solutions, that is, solutions for all
values of t ∈ R.

Definition 2.2. A constant coefficient, 1st order linear system of ODEs is called homoge-
neous if ~g(t) ≡ 0. It is called non-homogeneous if ~g(t) 6≡ 0.

Theorem 2.1. (Existence and Uniqueness) Let A be a constant coefficient (n× n)-matrix.
Let ~g(t) be a continuous vector-valued function. For every ~x0 ∈ Rn and every t0 ∈ R, there
exists a unique solution to the Initial Value Problem

d

dt
~x(t) = A~x(t) + ~g(t) ~x(t0) = ~x0.

This theorem is very important. It tells us that we have solutions and the solutions are
unique. We will definitely use it later.

For now, let us restrict our attention to the homogeneous case.

Question 2.2: Now that we know we have solutions, what does the set of solutions to
d
dt
~x = A~x look like? What kind of structure does it have?

Answer: To answer this question, it helps to re-write the equation d
dt
~x = A~x as the

following:

(
d

dt
− A)~x(t) = ~0.

That is, we view solutions as vector-valued functions which are in the kernel of the
operator ( d

dt
− A).
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Definition 2.3. An operator is a function of functions. That is, if is an object that takes
functions as inputs and gives functions as outputs.

In our case, it is clear that for any differentiable vector-valued function, ~y(t), we can form
a new function by the rule

(
d

dt
− A)~y(t) =

d

dt
~y(t)− A~y(t).

This leaves only the question of whether or not the operator ( d
dt
− A) is linear. Let’s check

from the definition!
Let ~x(t) and ~y(t) be elements of the kernel of ( d

dt
− A), then

( d
dt
− A)(~x(t) + c~y(t)) = ( d

dt
− A)~x(t) + c( d

dt
− A)~y(t)

= 0 + c0
= 0.

The kernel of a linear map is always a a vector space. Thus, the set of
solutions to ( d

dt
−A)~x(t) = 0 forms a vector space. This means that we can think about

a solution to ( d
dt
−A)~x(t) = ~0. as a vector in a vector space. That is, the set of solutions to

( d
dt
−A)~x(t) = ~0— which is a collection of vector-valued functions— is a vector space. This

is very useful, because in 308, we learned a lot about vector spaces.

Question 2.3: If solutions are vectors in a vector space, is there a notion of linear
independence for solutions/vector-valued functions?

Answer: Yes. In fact, we have exactly the same definitions. We simply treat the
vector-valued functions as different vectors at different times.

Definition 2.4. A collection of n−vector-valued functions, {~x1(t), ~x2(t), ..., ~xj(t)}, is called
linearly dependent at time t if there exists a non-trivial linear combination such that

c1~x1(t) + c2~x1(t) + ....+ cj~xj(t) = ~0.

If the only such linear combination is the trivial combination (all zeros), the the collection
is linearly independent at time t.

In practice, we will be mostly interested in when j = n if A is an (n × n)−matrix. In
that case, there is an easy test for linear independence.
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Definition 2.5. For a collection of n−vector-valued functions, {~x1(t), ~x2(t), ..., ~xn(t)}, we
define their Wronskian as the following function:

W [~x1, ~x2, ..., ~xn](t) = det
(
~x1(t) ~x2(t) · · · ~xn(t)

)
.

That is, the Wronskian of a collection of vector-valued functions is the determinant of
the matrix whose columns are that collection of vector-valued functions. This makes the
Wronskian a function of t. Just as for constant-vectors, if the W [~x1, ~x2, ..., ~xn](t) = 0 then
the columns are linearly dependent at time t. If W [~x1, ~x2, ..., ~xn](t) 6= 0, then the columns
are linearly independent at time t.

Now, at first, this should seem very unsatisfying. It looks like vector-valued func-
tions can be linearly independent at one time and linearly dependent at another
time. In general, this does happen. But, not if ~x1(t), ~x2(t), ..., ~xn(t) are all solutions
to ( d

dt
− A)~x(t) = 0 on an interval (a, b).

Theorem 2.2. (Abel’s Theorem) Let A be an (n×n)−matrix. Then, if {~x1(t), ~x2(t), ..., ~xn(t)}
are all solutions to ( d

dt
− A)~x(t) = 0, then either

W [~x1, ~x2, ..., ~xn](t) = 0 for all times t

or

W [~x1, ~x2, ..., ~xn](t) 6= 0 for all times t

This means that solutions are either always linearly independent or always dependent.

Question 2.4: If the space of solutions is a vector space, how big is it? What is its
dimension?

Answer: If A is an (n× n)−matrix, then the set of solutions to ( d
dt
−A)~x(t) = 0

is an n−dimensional vector space.
Recall that one of the definitions of the dimension of a vector space is the number of

vectors in a basis for that vector space. This is, it is the maximum number of linearly
independent vectors that can be found in that vector space. To show that we have an
n−dimensional vector space, then, we must show that there exist n linearly inde-
pendent solutions, and that any collection of n+1 solutions is linearly dependent.

To see that there exist at least n solutions which are linearly independent, we turn to
our Existence and Uniqueness Theorem. Choose time t = 0, for any vector, ~x0 ∈ Rn, the
Existence and Uniqueness Theorem says that there exists a unique solution to the Initial
Value Problem :

(
d

dt
− A)~x(t) = 0 , ~x(0) = ~x0.

29



So, we can choose any n linearly independent vectors in Rn, say, ~x1, ~x2, ..., ~xn and the
Existence and Uniqueness Theorem gives us n solutions to ( d

dt
−A)~x(t) = 0. For ease, let us

call these solutions ~x1(t), ~x2(t), ..., ~xn(t). To see that these solutions are linearly independent,
we check their Wronskian. By Abel’s Theorem, we need only check at t = 0. Thus, we have
that

W [~x1, ~x2, ..., ~xn](0) = det
(
~x1(0) ~x2(0) · · · ~xn(0)

)
= det

(
~x1 ~x2 · · · ~xn

)
6= 0

Hence, we can find at least n linearly independent solutions.
To see that any collection of n + 1 solutions must be linearly dependent, we also use

the Existence and Uniqueness Theorem. Let {~x1(t), ~x2(t), ..., ~xn(t), ~xn+1(t)} all be solutions
to the equation ( d

dt
− A)~x(t) = 0. If the first n of them are linearly dependent, then the

whole collection is linearly dependent, and we have nothing to show. So, assume that
{~x1(t), ~x2(t), ..., ~xn(t)} are linearly independent. We need to show that ~xn+1(t) is a linear
combination of {~x1(t), ~x2(t), ..., ~xn(t)}.

Let t = 0. By Abel’s Theorem, {~x1(0), ~x2(0), ..., ~xn(0)} is still a linearly independent
collection of vectors in Rn. Therefore, they must form a basis for Rn. Therefore there is a
linear combination such that

c1~x1(0) + c2~x2(0) + ...+ cn~xn(0) = ~xn+1(0)

Since the solutions ~xn+1(0) and c1~x1(0) + c2~x2(0) + ... + cn~xn(0) satisfy the same Initial
Value Problem, the Existence and Uniqueness Theorem implies that they must be the same
solution. Thus,

~xn+1(t) = c1~x1(t) + c2~x2(t) + ...+ cn~xn(t).

This means that {~x1(t), ~x2(t), ..., ~xn(t), ~xn+1(t)} is linearly dependent. Therefore, the set
of solutions to ( d

dt
− A)~x(t) = 0 is an n−dimensional vector space.

Question 2.5: Now that we know that the space of solutions is an n−dimensional vector
space, how do we get a handle on it? How do we describe it?

Answer: All the information in a vector space is contained in its basis. Once
we have a basis, we know everything about that vector space. That means, once we
have a basis for the space of solutions to the equation ( d

dt
−A)~x(t) = 0, we know everything

about all solutions to ( d
dt
− A)~x(t) = 0. Because bases are so important, they get a special

name.

Definition 2.6. Let A be an (n × n)−matrix. A collection of vector-valued functions,
{~x1(t), ~x2(t), ..., ~xn(t)}, is called a fundamental set of solutions for the system ( d

dt
−

A)~x(t) = 0 if and only if the following hold:

1. Each vector-valued function ~xi(t) is a solution of ( d
dt
− A)~x(t) = 0.
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2. The collection, {~x1(t), ~x2(t), ..., ~xn(t)}, is linearly independent.

A fundamental set of solutions of ( d
dt
− A)~x(t) = 0 is a basis for the space of

solutions to ( d
dt
− A)~x(t) = 0.

Sometimes it is more convenient to put a fundamental set of solutions into a matrix. We
have a special name for that, too.

Definition 2.7. Any (n × n)−matrix-valued function Ψ(t) whose columns form a funda-
mental set of solutions for ( d

dt
−A)~x(t) = 0 is called a fundamental matrix of the equation

( d
dt
− A)~x(t) = 0.

This means that the columns of a fundamental matrix, Ψ(t), are solutions and are linearly
independent. If we let {~x1(t), ~x2(t), ..., ~xn(t)} be a fundamental set of solutions for ( d

dt
−

A)~x(t) = 0 and write Ψ(t) =
(
~x1(t) ~x2(t) · · · ~xn(t)

)
, then because the columns are

solutions, we have that

AΨ(t) = A
(
~x1(t) ~x2(t) · · · ~xn(t)

)
=

(
A~x1(t) A~x2(t) · · · A~xn(t)

)
=

(
d
dt
~x1(t) d

dt
~x2(t) · · · d

dt
~xn(t)

)
= d

dt
Ψ(t)

This means that any fundamental matrix to the equation ( d
dt
− A)~x(t) = ~0 is a

solution to the corresponding matrix equation ( d
dt
− A)Z(t) = 0n×n.

Because the columns of a fundamental matrix are linearly independent, for any funda-
mental matrix, Ψ(t) , to the equation ( d

dt
− A)~x(t) = 0 we have that

det(Ψ(t)) = det
(
~x1(t) ~x2(t) · · · ~xn(t)

)
= W [~x1, ~x2, ..., ~xn](t)
6= 0

Question 2.8: Why do we care?

Answer: Since the columns of a fundamental matrix form a basis for the set
of solutions, every solution can be uniquely written as a linear combination of
those basis vectors. Thus, if Ψ(t) is a fundamental matrix for ( d

dt
− A)~x(t) = 0,

then every solution to ( d
dt
− A)~x(t) = 0 can be written uniquely as

Ψ(t)~c.

for some vector ~c ∈ Rn.

31



2.2 Matrix Exponentiation

Consider the scalar-valued ODE
y′ = ay.

We know from 307 that the general solution to this ODE is

x(t) = eat · c.

Thus, we might hope that if we consider the vector-valued ODE

d

dt
~x(t) = A~x

the general solution might be something like

eAt~c

If we could make sense of it. That is, we might hope that eAt was a fundamental matrix for
d
dt
~x = A~x.

Question 2.6: What could eAt possibly mean??

Answer: To answer this question, we must ask what the scalar-valued function eat

means. From 126, we recall that eat has a Taylor series or power series.

eat = 1 + at+ a2 t2

2!
+ a3 t3

3!
+ a4 t4

4!
+ ....

=
∑∞

n=1 a
n tn

n!

This formal power series only involves taking powers of a, multiplying by scalars, tn

n!
, and

summation. These are all things that we can do with matrices. So we arrive at the following
definition.

Definition 2.8. Let A be an (n×n)−matrix. We define the (n×n)−matrix-valued function
eAt as the following power series

eAt = In + At+ A2 t
2

2!
+ A3 t

3

3!
+ A4 t

4

4!
+ ....

As with eat, the radius of convergence is infinite. That is, the power series eAt converges
to a matrix for all t <∞.

Question 2.7: Is eAt actually a fundamental matrix for ( d
dt
− A)~x = ~0?
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Answer: Let’s check! Recall that we need to check two things: are the columns of eAt

solutions to ( d
dt
− A)~x = ~0 and are the columns linearly independent.

To check that the columns are solutions to ( d
dt
− A)~x = ~0, it suffices to show that eAt is

a solution to the corresponding matrix-valued ODE

d
dt
eAt = d

dt
(In + At+ A2 t2

2!
+ A3 t3

3!
+ A4 t4

4!
+ ....)

= d
dt
In + d

dt
At+ d

dt
A2 t2

2!
+ d

dt
A3 t3

3!
+ d

dt
A4 t4

4!
+ ....

= 0n + A+ A2 t
1!

+ A3 t2

2!
+ A4 t3

3!
+ ....

= A((In + At+ A2 t2

2!
+ A3 t3

3!
+ A4 t4

4!
+ ....)

= AeAt

Justifying the second line in the calculation above takes a bit of finesse, since we are
switching the limit involved in the derivative with the limit of the sums. This requires that
we check just how eAt converges, but we will sweep these details under the rug. Suffice it
to say that it works and thus, eAt is a solution to the corresponding matrix-valued
ODE Z ′ = AZ. This means that the columns of eAt are solutions to ( d

dt
− A)~x = ~0.

Next, we need to check that the columns of eAt are linearly independent. Our test
for independence is to take the Wronskian of the columns. Recall that this is just the
determinant of the matrix. By Abel’s Theorem, we need only check at a single time, t. Let
that time be t = 0. Hence,

W (0) = det(eA·0)

= det(In + A0 + A2 02

2!
+ A3 03

3!
+ A4 04

4!
+ ....)

= det(In)
= 1

Thus, the columns of eAt are linearly independent solutions to ( d
dt
− A)~x = ~0. eAt is a

fundamental matrix for ( d
dt
− A)~x = ~0.

It turns out, by the Existence and Uniqueness Theorem, that eAt is the unique funda-
mental matrix which satisfies the matrix-valued Initial Value Problem

Z ′ = AZ , Z(0) = In

This is easily seen by applying our vector Existence and Uniqueness Theorem to the columns
of Z.

2.3 How to find eAt explicitly

Finding eAt from the power series is almost always impossible. But, Jordan Form makes
it easy.

Change of Basis Let A be an (n× n)−matrix. Let J be the Jordan Form of A and S
be the change of basis matrix so that AS = SJ . Given a vector-valued ODE,
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d

dt
~x = A~x,

we want to change coordinates, i.e., change our basis, to the best coordinates, the ones
in which the linear transformation represented by A is simplest.

Doing the change of basis substitution, ~x = S~y, we get the new system of ODEs S d
dt
~y =

AS~y. Rearranging, and noticing that by definition, J = S−1AS, we have

d

dt
~y(t) = J~y(t)

Now, we know that eJt is a fundamental matrix for d
dt
~y = J~y. So, changing our coordi-

nates back, I claim that SeJt is a fundamental matrix for d
dt
~x(t) = A~x(t).

Proof: What does it mean to be a fundamental matrix for d
dt
~x(t) = A~x(t)? It means

that the columns of the matrix-valued function SeJt form a linearly independent collection
of solutions to d

dt
~x(t) = J~x(t). To see that the columns are solutions, we check that SeJt

satisfies the matrix equation Z ′ = AZ.

d
dt

(SeJt) = S d
dt
eJt

= SJeJt

= SJ(S−1S)eJt

= ASeJt

To see that the columns are linearly independent, we check the Wronskian. As always,
by Abel’s Theorem, we only need check at one time, let that be t = 0.

W (0) = det(SeJ0)
= det(SIn)
= det(S)
6= 0

where we know that det(S) 6= 0 because the columns of S form a basis.

In practice, as has already been discussed, it is usually sufficient to find a fundamental
matrix, ANY fundamental matrix. But, since this section is about finding eAt, let’s actually
find eAt. Recall that eAt is the unique matrix-valued function which satisfies the
matrix Initial Value Problem

Z ′(t) = AZ(t) , Z(0) = In

If we consider SeJtS−1, then, clearly SeJ0S−1 = In. And,

d
dt

(SeJtS−1) = S d
dt
eJtS−1

= SJeJtS−1

= SJ(S−1S)eJtS−1

= ASeJtS−1.
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Thus, SeJtS−1 = eAt. This means we only need to find eJt. Because J has such
a simple form, this is actually relatively easy.

How to find eJt: We derive eJt case-by-case and from the definition. Recall that by
definition

eJt = In + Jt+ J2 t
2

2!
+ J3 t

3

3!
+ J4 t

4

4!
+ ....

1. If J is of the form J =

(
λ1 0
0 λ2

)
, then

(
λ1 0
0 λ2

)2

=

(
λ2

1 0
0 λ2

2

)
(
λ1 0
0 λ2

)3

=

(
λ3

1 0
0 λ3

2

)
...(

λ1 0
0 λ2

)n
=

(
λn1 0
0 λn2

)
Now, we just sum up the series. Adding component by component, we get

eJt = In + Jt+ J2 t2

2!
+ J3 t3

3!
+ J4 t4

4!
+ ....

=

(
1 + λ1t+ λ2

1
t2

2!
+ ... 0

0 1 + λ2t+ λ2
2
t2

2!
+ ...

)
=

(
eλ1t 0
0 eλ2t

)
.

2. If J is of the form J =

(
λ 1
0 λ

)
, then

(
λ 1
0 λ

)2

=

(
λ2 2λ
0 λ2

)
(
λ 1
0 λ

)3

=

(
λ3 3λ2

0 λ3

)
...(

λ 1
0 λ

)n
=

(
λn nλn−1

0 λn

)
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Now, we just sum up the series. Adding component by component, we get

eJt = In + Jt+ J2 t2

2!
+ J3 t3

3!
+ J4 t4

4!
+ ....

=

(
1 + λt+ λ2 t2

2!
+ ... 0 + 1t+ 2λ t

2

2!
+ 3λ2 t3

3!
+ ...

0 1 + λt+ λ2 t2

2!
+ ...

)
=

(
eλt teλt

0 eλt

)
.

3. If J is of the form J =

λ 1 0
0 λ 1
0 0 λ

, then

λ 1 0
0 λ 1
0 0 λ

2

=

λ2 2λ 1
0 λ2 2λ
0 0 λ2


λ 1 0

0 λ 1
0 0 λ

3

=

λ3 3λ2 3λ
0 λ3 3λ2

0 0 λ3


...λ 1 0

0 λ 1
0 0 λ

n

=

λn nλn−1 n(n−1)
2

λn−2

0 λn nλn−1

0 0 λn


Again, we sum up the series, adding component by component.

eJt =

1 + λt+ λ2 t2

2!
+ ... 0 + 1t+ 2λ t

2

2!
+ 3λ2 t3

3!
+ ... 0 + 0 + 1 t

2

2!
+ 3λ t

3

3!
+ ...

0 1 + λt+ λ2 t2

2!
+ ... 0 + 1t+ 2λ t

2

2!
+ 3λ2 t3

3!
+ ...

0 0 1 + λt+ λ2 t2

2!
+ ...


=

eλt teλt t2

2!
eλt

0 eλt teλt

0 0 eλt

 .

4. The other cases are easily dealt with once we recall a fact about block diagonal matrices.
If A and B are submatrices of a block diagonal matrix, then,

(
A 0
0 B

)2

=

(
A2 0
0 B2

)
Applying this rule to the other possible Jordan Forms easily gives their formulae. For
instance, it shows that if a matrix, M , is block diagonal (all Jordan forms are block

diagonal), then if M =

(
A 0
0 B

)
for some submatrices, A,B,

eMt =

(
eAt 0
0 eBt

)
However, this only works with Block diagonal matrices.
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Thus, to find eAt,

• Step 1: Find J , the Jordan Form of A, and S the change of basis matrix such that
AS = SJ .

• Step 2:Use the formulas to write down eJt.

• Step 3: eAt = SeJtS−1.

Example 2.2: Let A =

(
1 2
0 1

)
. Give the matrix-valued function eAt.

By previous example, we know that J =

(
1 1
0 1

)
and S =

(
1 0
0 1/2

)
.

Thus, eJt =

(
et tet

0 et

)
and

eAt =

(
1 0
0 1/2

)(
et tet

0 et

)(
1 0
0 2

)

Reflection Questions

1. What is the series definition of eAt?

2. What type of object is eAt? Is it a matrix, vector, scalar-valued function, vector-valued
function, or matrix-valued function?

3. What properties does eAt have?

4. Given a (2× 2) or (3× 3) matrix, A, by what steps do we find eAt?

5. If J =

λ1 0 0
0 λ2 1
0 0 λ2

 what is eJt?

6. If J =


λ1 0 0 0
0 λ1 0 0
0 0 λ2 1
0 0 0 λ2

 what is eJt?

7. If J =

λ1 0 0
0 λ2 1
0 0 λ2

 what is d
dt
eJt?
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2.4 Solving d
dt~x = A~x

The whole point of our approach to this problem has been that every solution to
d
dt
~x = A~x can be written as a linear combination of the columns of a fundamental

matrix. If J is the Jordan Form of A and S is the change of basis matrix such
that AS = SJ, then SeJt is a fundamental matrix for the system d

dt
~x = A~x. Thus,

every solution of d
dt
~x = A~x can be written as

~x(t) = SeJt~c

for some vector ~c ∈ Rn.

Definition 2.9. The general solution to a system of equations is an expression involving
parameters, c1, c2, ..., cn, such that two things hold:

1. For every choice of parameters, c1, c2, ..., cn, the expression is a solution to the given
system of equations.

2. Every solution to the given system of equations can be written as some particular
choice of parameters in the expression.

Not every system of equations has a general solution. In fact, general 1st order linear
system of equations, d

dt
~x(t) = A(t)~x(t) may not have a general solution. However, if we

restrict to the constant coefficient case, then d
dt
~x = A~x does have a general solution, and the

general solution is
~x(t) = SeJt~c.

Example 2.3. Let A =

(
3 −18
2 −9

)
. Give the general solution to ( d

dt
− A)~x = ~0.

Since the general solution is SeJt~c, we need to find S, J and then eJt.

1. First, we find J and S. Checking the characteristic equation, we find that

det(A− λI) = (λ+ 3)2 = 0.

Hence, we have an eigenvalue, λ = −3, with algebraic multiplicity m = 2. To find
eigenvectors, we solve

(A− (−3)λ)~x =

(
6 −18
2 −6

)(
x1

x2

)
= ~0

to get a single linearly independent eigenvector, ξ =

(
3
1

)
. To build our Jordan chain,

we then solve
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(A− (−3)λ)~x =

(
6 −18
2 −6

)(
x1

x2

)
=

(
3
1

)
to get the generalized eigenvector ~η =

(
1/2
0

)
.

Thus, J =

(
−3 1
0 −3

)
and S =

(
3 1/2
1 0

)
.

2. Now, we write down eJt

eJt =

(
e−3t te−3t

0 e−3t

)
3. Finally, we can write down the general solution.

SeJt~c =

(
3 1/2
1 0

)(
e−3t te−3t

0 e−3t

)(
c1

c2

)
Sometimes it is helpful to actually do the matrix multiplication. In that case the
general solution becomes

SeJt~c = c1

(
3
1

)
e−3t + c2(

(
3
1

)
te−3t +

(
1/2
0

)
e−3t)

Example 2.4. Let A =

(
1 2
−3 0

)
. Give the general solution to ( d

dt
− A)~x = ~0.

1. FIrst, find J and S. Checking the Characteristic equation, we find that

det(A− λI) = λ2 − λ+ 6 = 0.

Using the quadratic equation, we see that λ = 1/2± i
√

23/2. To find eigenvectors, we
first solve

(A− (1/2 + i
√

23/2)λ)~x =

(
1/2− i

√
23/2 2

−3 −1/2− i
√

23/2

)(
x1

x2

)
= ~0

to get the eigenvector, ξ1 =

(
−1/6− i

√
23/6

1

)
.

Next, we pick the other eigenvalue and solve

(A− (1/2− i
√

23/2)λ)~x =

(
1/2 + i

√
23/2 2

−3 −1/2 + i
√

23/2

)(
x1

x2

)
= ~0

to get the eigenvector, ξ2 =

(
−1/6 + i

√
23/6

1

)
.

Thus, J =

(
1/2 + i

√
23/2 0

0 1/2− i
√

23/2

)
and S =

(
−1/6− i

√
23/6 −1/6 + i

√
23/6

1 1

)
.
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2. Now, we need to write down eJt

eJt =

(
e(1/2+i

√
23/2)t 0

0 e(1/2−i
√

23/2)t

)

3. Finally, we can write down the general solution.

SeJt~c =

(
−1/6− i

√
23/6 −1/6 + i

√
23/6

1 1

)(
e(1/2+i

√
23/2)t 0

0 e(1/2−i
√

23/2)t

)(
c1

c2

)

Again, it can be helpful to do the matrix multiplication. In that case the general
solution becomes

SeJt~c = c1

(
−1/6− i

√
23/6

1

)
e(1/2+i

√
23/2)t + c2

(
−1/6 + i

√
23/6

1

)
e(1/2−i

√
23/2)t.

Question 2.9: What if we want real-valued solutions?

Answer: There is nothing wrong with complex-valued solutions! But, if you insist on
having real-valued solutions, that isn’t too hard. Let’s review a few facts about complex
numbers.

First, recall that a complex number, z ∈ C, can be written as z = a + ib for two real
numbers a, b. The number a is called the real part of z, and the number b is called the
imaginary part of z. If ~x(t) is a complex, vector-valued solution, for each time, t, ~x(t)
is a vector with complex entries. Since we can split each complex number into real and
imaginary parts, we can split complex vectors into real and imaginary parts. This lets us we
can split ~x(t) into real and imaginary parts. That is, we can write

~x(t) = ~u(t) + i~v(t)

where ~u(t), ~v(t) are real, vector-valued functions.
Next we observe three simple facts about complex numbers: If a, b ∈ R

• The product of two real numbers is real. ab ∈ R.

• The product of a real number and an imaginary number is imaginary. a(ib) = i(ab).

• Two complex numbers are equal if and only if their real parts and their imaginary
parts are equal. a+ ib = c+ id iff a+ c and b = d.
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Thus, because A only has real values, if ~x(t) = ~u(t) + i~v(t) is a solution to d
dt
~x = A~x,

then
d

dt
(~u(t) + i~v(t)) = A(~u(t) + i~v(t))

and therefore,
d

dt
~u(t) + i

d

dt
~v(t) = A~u(t) + iA~v(t).

Thus, because real parts and imaginary parts must be equal, we have that

d
dt
~u(t) = A~u(t)

d
dt
~v(t) = A~v(t)

So, if we have a complex-valued solution, ~x(t) = ~u(t)+i~v(t), and A is real-valued,
then the real and complex parts, ~u(t) and ~v(t), are real-valued solutions.

In the example above, that means that we need to take one of the solutions and slit it
into real and imaginary parts. We do that using Euler’s Formula.(
−1/6 + i

√
23/6

1

)
e(1/2−i

√
23/2)t = (

(
−1/6

1

)
+ i

(√
23/6
0

)
)e(1/2−i

√
23/2)t

= (

(
−1/6

1

)
+ i

(√
23/6
0

)
)e

1
2
t)(cos(−

√
23

2
t) + isin(−

√
23

2
t))

= (

(
−1/6

1

)
e

1
2
tcos(−

√
23

2
t)−

(√
23/6
0

)
e

1
2
tsin(−

√
23

2
t))

+i(

(
−1/6

1

)
e

1
2
tsin(−

√
23

2
t) +

(√
23/6
0

)
e

1
2
tcos(−

√
23

2
t))

= ~u(t) + i~v(t)

Question 2.10: Are ~u(t) and ~v(t) linearly independent?

Answer: Let’s check! As always, Abel’s theorem allows us to choose a single time, t, to
check at. Let’s choose t = 0.

W [~u,~v](0) = det

(
1
6

√
23
6

1 0

)
= det(S)
6= 0

Thus, they are always linearly independent.

Example 2.5. Let A =

5 −4 0
1 0 2
0 2 5

. Give the general solution to ( d
dt
− A)~x = ~0.
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1. Again, we find J and S. Checking the characteristic equation, we find that

det(A− λI) = (λ− 5)2(−λ) = 0.

Thus, our eigenvalues are λ = 5 and λ = 0. To find eigenvectors, we first solve

(A− (5)λ)~x =

0 −4 0
1 −5 2
0 2 0

x1

x2

x3

 = ~0

to get the eigenvector, ξ1 =

 2
0
−1

.

Next, we pick the other eigenvalue and solve

(A− (0)λ)~x =

5 −4 0
1 0 2
0 2 5

x1

x2

x3

 = ~0

to get the eigenvector, ξ2 =

 −2
−5/2

1

.

Now, we build our Jordan chain off of ξ1 =

 2
0
−1

. We solve

(A− (5)λ)~x =

0 −4 0
1 −5 2
0 2 0

x1

x2

x3

 = ξ1 =

 2
0
−1


to get the generalized eigenvector, ~η =

5/2
1/2
0

.

Thus, J =

5 1 0
0 5 0
0 0 0

 and S =

−2 5/2 −2
0 1/2 −5/2
1 0 1

 .

2. Now, we need to write down eJt

eJt =

e5t te5t 0
0 e5t 0
0 0 1


3. Finally, we can write down the general solution.

SeJt~c =

−2 5/2 −2
0 1/2 −5/2
1 0 1

e5t te5t 0
0 e5t 0
0 0 1

c1

c2

c3


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Again, it can be helpful to do the matrix multiplication. In that case the general
solution becomes

~x(t) = c1

−2
0
1

 e5t + c2(

−2
0
1

 te5t +

5/2
1/2
0

 e5t) + c3

 −2
−5/2

1


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2.5 How do solutions behave?

Now that we know how to find a basis for solutions to equations of the form ( d
dt
−A)~x = ~0,

we might ask, how do they behave? What happens to these solutions as time goes on? We
restrict ourselves to considering the 2−dimensional case.

If A is a (2 × 2)−matrix, then there are only two possibilities. Either A is
diagonalizable, in which case the general solution looks like

~x(t) = c1
~ξ1e

λ1t + c2
~ξ2e

λ2t

or, A is defective, in which case the general solution looks like

~x(t) = c1
~ξeλt + c2(~ξteλt + ~ηeλt).

In either case, every solution is a linear combination of functions that look like ~ξeλt or
~ξteλt for some choice of λ and ~ξ.

Question 2.11: What kind of objects ARE ~ξeλt and ~ξteλt?

Answer: These are vector-valued functions. Recall that this means that for every time
t, ~ξeλt is a vector in R2. As t changes, ~ξeλt gives different vectors in R2. Thus, the
function ~ξeλt describes a path in R2 parametrized by t.

Definition 2.10. An integral curve of a system of ODEs, ( d
dt
− A)~x(t) = ~0, is a curve

which traces the path of a solution. That is, for all the vectors, ~x, ~y, on the integral curve,
there is a solution to ( d

dt
− A)~x(t) = ~0 which goes through both ~x and ~y.

This definition captures the notion that solutions describe paths in R2.

Question 2.12: How do ~ξeλt and ~ξteλt behave as time goes on?

Answer: Obviously this depends upon ~ξ and λ. But let’s concentrate on what solutions
do as t→∞. This is a simple limit calculation.

limt→∞|~ξeλt| = |~ξ|limt→∞|eλt|

=


0 if Re(λ) < 0

∞ if Re(λ) > 0

|~ξ| if Re(λ) = 0
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Similarly,

limt→∞|~ξteλt| = |~ξ|limt→∞|teλt|

=


0 if Re(λ) < 0

∞ if Re(λ) > 0

∞ if Re(λ) = 0

As you can see, this means there are three types of solutions: solutions which eventually
“blow up” by going off to infinity, solutions which asymptotically approach the origin, and
solutions which neither blow up nor asymptotically approach the origin. These completely
determine the behavior of solutions.

Definition 2.11. A solution to ( d
dt
− A)~x = ~0 is called an equilibrium solution or a

critical point of ( d
dt
− A)~x = ~0 if d

dt
~x(t) = ~0. That is, an equilibrium solution is one which

is constant.

Observe that for homogeneous 1st order linear systems of ODEs, the zero vector, ~x(t) ≡ ~0,
is always an equilibrium solution.

Classifying Critical Points To classify critical points, we care about how solutions
near a critical point behave. From the discussion above, we can see that solutions only
behave one of three ways, we classify along those lines.

Definition 2.12. A critical point of ( d
dt
−A)~x = ~0 is called unstable if ANY solution nearby

diverges to infinity.

Definition 2.13. A critical point of ( d
dt
−A)~x = ~0 is called asymptotically stable if ALL

solution nearby asymptotically approach that critical point.

Definition 2.14. A critical point of ( d
dt
−A)~x = ~0 is called stable if ALL solutions nearby

neither diverge to infinity nor asymptotically approach that critical point.

It is clear from the previous page that ~0 is an unstable critical point if any of the
eigenvalues of A have positive real part. Similarly, ~0 is an asymptotically stable
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critical point if al of the eigenvalues of A have negative real part. And, finally, ~0
is a stable critical point only if all of the eigenvalues of A are non-zero, but have
real part equal to zero.

Note that this does not completely classify all critical points. If λ = 0 is an eigenvalue,
then all eigenvectors, ~ξ, associated to λ = 0, will be critical points of ( d

dt
−A)~x = ~0. But, if A

has another non-zero eigenvalue with negative real part, then these points will not necessarily
be asymptotically stable, stable, or unstable.

Question: How do we draw integral curves?

Answer: We draw integral curves to ( d
dt
−A)~x(t) = ~0 by first writing down the general

solution to ( d
dt
− A)~x(t) = ~0. There are only 2 possibilities for a (2× 2)−matrix.

Either A is diagonalizable, in which case the general solution looks like

~x(t) = c1
~ξ1e

λ1t + c2
~ξ2e

λ2t

or, A is defective, in which case the general solution looks like

~x(t) = c1
~ξeλt + c2(~ξteλt + ~ηeλt).

By the Existence and Uniqueness theorem, for every vector ~x0 ∈ R2, there exists a
solution to ( d

dt
− A)~x(t) = ~0 which satisfies the initial condition, ~x(0) = ~x0. Plugging in the

initial conditions, we see that the constants c1, c2 simply determine the linear combinations
of ~ξ1, ~ξ2 or ~ξ, ~η which sum up to ~x0.

From this point, since we now have an explicit formula for ~x(t), we need only take the
limit,

limt→∞~x(t)

and observe the relative speeds with which eλt and teλt grow or decay.

Reflection Questions

1. How might we find critical points of ( d
dt
− A)~x(t) = ~0?

2. What is an integral curve? Is it possible for different solutions to lie on the same
integral curve?

3. What is the general process for drawing integral curves of ( d
dt
− A)~x(t) = ~0?

4. Suppose A has two eigenvalues, λ = 0 and λ = 24. How many critical points will A
have? Will they be asymptotically stable, stable, or unstable?

5. Suppose A is a (2× 2)−matrix which has one eigenvalue, λ = −3. How many critical
points will A have? Will they be asymptotically stable, stable, or unstable?
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6. If λ1 > λ2, which function grows faster as t→∞, eλ1t or eλ2t?

7. If λ1 > λ2, which function shrinks faster as t→ −∞, eλ1t or eλ2t?

8. Which function grows faster as t→∞, eλt or teλt?

9. Which function shrinks faster as t→ −∞, eλt or teλt?
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2.6 Non-homogeneous Equations

Now that we know a lot about 1st order linear systems of homogeneous ODEs, we consider
a closely related class of systems, 1st order linear systems of non-homogeneous ODEs. In
general, these systems are written as

d

dt
~x(t) = A~x(t) + ~g(t).

Where ~x(t) and ~g(t) are vector-valued functions, i.e., vectors whose entries are functions,
and A is a square matrix with constant entries.

Question 2.13: What does the set of solutions to d
dt
~x(t) = A~x(t)+~g(t) look like? What

kind of structure does it have?

Answer: Just as before, we re-write the equation d
dt
~x = A~x+ ~g as the following:

(
d

dt
− A)~x(t) = ~g(t).

Except that now, because our equations are non-homogeneous, solutions are no longer in
the kernel of the operator ( d

dt
− A). This changes everything.

Solutions to non-homogeneous equations do not form a vector space. To see
this, let ~x(t) and ~y(t) be solutions to ( d

dt
− A)~x(t) = ~g(t).

( d
dt
− A)(~x(t) + ~y(t)) = ( d

dt
− A)~x(t) + ( d

dt
− A)~y(t)

= ~g(t) + ~g(t)
6= ~g(t).

However, the difference between any two solutions to a non-homogeneous linear
system of ODEs is a solution to the corresponding homogeneous equation. That
is, if we again let ~x(t) and ~y(t) be solutions to ( d

dt
− A)~x(t) = ~g(t).

( d
dt
− A)(~x(t)− ~y(t)) = ( d

dt
− A)~x(t)− ( d

dt
− A)~y(t)

= ~g(t)− ~g(t)

= ~0.

Since we know that every solution to the corresponding homogeneous linear systems of
ODEs can be written as SeJt~c, we can write every solution to the non-homogeneous equation
as ~x(t) + SeJt~c. Therefore, the general solution to ( d

dt
− A)~x(t) = ~g(t) is

~xp(t) + SeJt~c
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where ~xp is any solution to ( d
dt
− A)~x(t) = ~g(t), and J is the Jordan form of A and S is the

change of basis matrix such that AS = SJ . Thus, the set of solutions to ( d
dt
−A)~x(t) = ~g(t)

forms an affine linear subspace.

Definition 2.15. A set is called an affine linear subspace if it is the translate of a linear
subspace. This means it takes the form ~v + V where V is a linear subspace and ~v 6= ~0.

Example: For any b 6= 0, the set {(x, y) ∈ R2|y = mx + b} is an affine linear subspace
of R2.

This means that to find the general solution to ( d
dt
−A)~x(t) = ~g(t), we need only

find a single solution to ( d
dt
− A)~x(t) = ~g(t) and then add on the general solution

to the corresponding homogeneous equation.

Question 2.14: How do we find a solution to ( d
dt
− A)~x(t) = ~g(t), then?

Answer: There are many ways to find a solution to ( d
dt
− A)~x(t) = ~g(t). We will focus

on two methods: Variation of Parameters and Change of Basis.

Variation of Parameters
Recall the method of Integrating Factors. For a 1st Order linear non-homogeneous ODE,

x′(t) = a(t)x(t) + b(t)

we rearranged the equation like so

x′(t)− a(t)x(t) = b(t)

and then searched for a function, µ(t), such that µ(t)x′(t) − a(t)µ(t)x(t) = (µ(t)x(t))′.
Expanding this equation, we got

µ(t)x′(t)− a(t)µ(t)x(t) = µ(t)x′(t) + µ′(t)x(t)

which meant that µ′(t) = −a(t)µ(t). Integrating, we saw that µ(t) = e−
∫
a(t)dt.

Thus, we could solve x′(t) = a(t)x(t) + b(t) as follows,

x′(t)− a(t)x(t) = b(t)
(µ(t)x(t))′ = µ(t)b(t)
µ(t)x(t) =

∫
µ(t)b(t)dt+ C

x(t) = µ(t)−1
∫
µ(t)b(t)dt+ Cµ(t)−1
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Here is another way to look at the method of Integrating Factors. We know
that the general solution to the homogeneous equation x′(t) = a(t)x(t) is given by

x(t) = e
∫ t
0 a(s)dsc.

So what if the solution to the corresponding non-homogeneous equation x′(t) = a(t)x(t)+
b(t) is given by

x(t) = e
∫ t
0 a(s)dsc(t).

for some function c(t)? Plugging in, we solve for c(t). That is, assume e
∫ t
0 a(s)dsc(t) is a

solution to x′(t) = a(t)x(t) + b(t). Then

(e
∫ t
0 a(s)dsc(t))′ = a(t)e

∫ t
0 a(s)dsc(t) + b(t)

a(t)e
∫ t
0 a(s)dsc(t) + e

∫ t
0 a(s)dsc′(t) = a(t)e

∫ t
0 a(s)dsc(t) + b(t)

e
∫ t
0 a(s)dsc′(t) = b(t)

c′(t) = e−
∫ t
0 a(s)dsb(t)

c(t) =
∫
e−

∫
a(r)drb(s)ds+ C

Thus, our solution to x′(t) = a(t)x(t) + b(t) is given by

e
∫ t
0 a(s)dsc(t) = e

∫ t
0 a(s)ds(

∫
e−

∫
a(r)drb(s)ds+ C).

Note that this is the same as we had derived previously.

If you recall, you did the same thing in 307 with 2nd order linear ODEs. That is, if
we have ah homogeneous equation y′′ + b(t)y′ + c(t)y = 0 with general solution x(t) =
c1y1(t) + c2y2(t), then we found a solution to the corresponding non-homogeneous equation,
y′′ + b(t)y′ + c(t)y = d(t) by assuming that the solution was of the form

x(t) = y1(t)c1(t) + y2(t)c2(t).

Again, actually solving for c1(t), c2(t) is done by plugging into the equation. But we will
not calculate them here. Instead, we give a more general solution.

If we have the homogeneous linear system of ODEs ( d
dt
−A)~x = ~0, we know that for any

fundamental matrix Φ(t), the general solution can be written as

~x(t) = Φ(t)~c

So, maybe a solution to the corresponding non-homogeneous system ( d
dt
− A)~x = ~g(t) is

of the form
~x(t) = Φ(t)~c(t).

We find the vector-valued function ~c(t) by assuming that Φ(t)~c(t) is a solution and plug-
ging it it.
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( d
dt
− A)Φ(t)~c(t) = ~g(t)

AΦ(t)~c(t) + Φ(t) d
dt
~c(t)− AΦ(t)~c(t) = ~g(t)

Φ(t) d
dt
~c(t) = ~g(t)

d
dt
~c(t) = Φ(t)−1~g(t)

thus, integrating, we see that

~c(t) =

∫ t

0

Φ−1(s)g(s)ds+ ~c

Hence, we have a solution to ( d
dt
− A)~x = ~g(t) given by

~x(t) = Φ(t)~c(t) = Φ(t)

∫ t

0

Φ−1(s)g(s)ds+ Φ(t)~c.

On closer inspection, this is clearly the general solution, since it is written as a
particular solution plus the general solution to the corresponding homogeneous
equation.

Observe that while this holds for ANY fundamental matrix, Φ(t), we can write is very
suggestively for the fundamental matrix, eAt.

~x(t) = eAt
∫ t

0

e−Asg(s)ds+ eAt~c.

This method of getting the general solution to ( d
dt
− A)~x = ~g(t) is very convenient for

analysis, but rather cumbersome for calculation. For calculating explicit solutions, it is often
easier to use a Change of Basis.

Change of Basis
Just as we have throughout this course, we wish to change coordinates to find the simplest

representation of ( d
dt
−A)~x(t) = ~g(t). As we have seen, this means finding the Jordan Form

of A.
So, if J is the Jordan form of A and S the change of basis matrix such that AS = SJ ,

we change variables by letting ~x = S~y. Thus, we have the new equation:

d
dt
S~y(t) = AS~y(t) + ~g(t)

d
dt
~y(t) = J~y(t) + S−1~g(t)

d
dt
~y(t) = J~y(t) + ~h(t)

Case 1. If A is diagonalizable, then J is diagonal, and this reduces to the system of equations

y′1(t) = λ1y1(t) + h1(t)
y′2(t) = λ2y2(t) + h2(t)
y′3(t) = λ3y3(t) + h3(t)

...
y′n(t) = λnyn(t) + hn(t)
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We recall from 307, that we can solve 1st order linear ODEs using the method of
Integrating Factors (which is reviewed above in the Variation of Parameters section).

Thus, the solution to d
dt
~y(t) = J~y(t) + ~h(t) is a vector-valued function, ~y(t) which has

entries

yi(t) = eλit
∫ t

0

e−λishi(s)ds+ cie
λit.

Our solution to d
dt
~x(t) = A~y(t) + ~g(t), then, is given by changing coordinates back by

~x = S~y.

Case 2. If J is not diagonal, then the system of equations may look something like this

y′1(t) = λ1y1(t) +y2(t) +h1(t)
y′2(t) = λ1y2(t) +h2(t)
y′3(t) = λ3y3(t) +h3(t)

...
y′n(t) = λnyn(t) +hn(t)

Notice that while some equations may involve more that one component function yi(t),
the last row will always only involve yn(t). Thus, we can solve the last row using
Integrating Factors, get a solution and substitute that concrete solution up into the
next equation. In this way we can successively solve all of the equations from the
bottom to the top using Integrating Factors.

Example 2.6 . Let A =

5 −4 0
1 0 2
0 2 5

. Let ~g(t) =

 0
0
e−t

. Give the general solution to

( d
dt
− A)~x(t) = ~g(t).

We first change bases. By previous calculation, we know that J =

5 1 0
0 5 0
0 0 0

 and

S =

2 5/2 −2
0 1/2 −5/2
1 0 1

 .

Calculating S−1~g(t), we get that ~h(t) =

 21
17
e−t

−20
17
e−t

−4
17
e−t

.

Thus, we need to solve the system of equations:

y′1(t) = 5y1(t) +y2(t) +21
17
e−t

y′2(t) = 5y2(t) +−20
17
e−t

y′3(t) = 0y3(t) +−4
17
e−t

We solve from the bottom to the top. In this case, we can simply integrate the equation,
y′3(t) = −4

17
e−t, to get that
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y3(t) =
4

17
e−t + c3

To solve for y2(t) we use Integrating Factors. By multiplying by the integrating factor,
e−5t, have that

y′2(t) = 5y2(t) + −20
17
e−t

(e−5ty2(t))′ = −20
17
e−6t

(e−5ty2(t)) =
∫ −20

17
e−6sds+ c2

= 10
51
e−6t.

Thus, isolating for y2(t), we find

y2(t) =
10

51
e−t + c2e

5t

Now, we substitute this into the top equation, getting that

y′1(t) = 5y1(t) +
10

51
e−t + c2e

5t +
21

17
e−t.

Using the same method of Integrating Factors, we derive the formula for y1(t).

y′1(t) = 5y1(t) + 10
51
e−t + c2e

5t + 21
17
e−t

(e−5ty1(t))′ = 73
51
e−6t + c2

(e−5ty1(t)) =
∫

73
51
e−6s + c2ds+ c1

= 73
306
e−6t + c2t+ c1

Again, isolating for y1(t) gives the formula

y1(t) =
73

306
e−t + c2te

5t + c1e
5t.

Changing bases back by ~x = S~y, we arrive as a particular solution,

~x(t) =

2 5/2 −2
0 1/2 −5/2
1 0 1

 73
306
e−t + c1e

5t + c2te
5t

10
51
e−t + c2e

5t

4
17
e−t + c3

 = S~y + SeJt~c.

Note that because we have kept the constants, c1, c2, c3, this is also the general solution
to the non-homogeneous equation. However, we could have let all those constants be 0. This
would have simplified our calculations and we still would have gotten a particular solution
to d

dt
~x(t) = A~x+~g(t). To get the general solution, we simply add the general solution to the

corresponding homogeneous equation to our particular solution.

Reflection Questions

1. What are the steps to the method of Integrating Factors that you learned in 307?

2. What are the steps to the method of integrating factors in the ”Variation of Parame-
ters” section, above?
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3. In your own words, what are the steps for solving ( d
dt
− A)~x(t) = ~g(t) by change of

variables?

4. Could this process be simplified if A were an upper triangular matrix? A lower trian-
gular matrix?

5. Do solutions to ( d
dt
− A)~x(t) = ~g(t) form a vector space?

6. What does the general solution to ( d
dt
− A)~x(t) = ~g(t) look like? Can you prove this

from the definition of a general solution?
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3 Fourier Series

3.1 Basis coefficients and Orthogonality

Let’s begin by reviewing some of the structures of Rn. As we learned in 308, Rn has the
structure of a vector space. That is,

1. For any ~x, ~y ∈ Rn and c ∈ R, ~x + c~y ∈ Rn (Closure under addition and scalar
multiplication)

2. There exists a vector ~0 such that ~x+~0 = ~x for all ~x ∈ Rn.

3. For all ~x, there exists a vector, −~x such that ~x+−~x = ~0.

4. The following algebraic rules hold for all ~x, ~y, ~z ∈ Rn and scalars a, b ∈ R:

• (~x+ ~y) = (~y + ~x)

• (~x+ ~y) + ~z = ~x+ (~y + ~z)

• a(~x+ ~y) = a~x+ a~y

• a(b~x) = (ab)~x

• (a+ b)~x = a~x+ b~x

For our purposes, one of the most important properties as a vector space is that
Rn has bases. For any basis, B = {~b1,~b2, ...,~bn}, we can write any vector, ~x ∈ Rn,
as a unique linear combination

~x = c1
~b1 + c2

~b2 + ....cn~bn.

But, Rn has additional structure, not related to begin a vector space (that is, that don’t
have to do with scaling and adding vectors together). Rn also has an inner product, also
known as the dot product.

Definition 3.1. Given a vector space, V , an inner product on V is a function, 〈·, ·〉V :
V × V → R obeying the following rules,

1. (Symmetry) For all ~x, ~y ∈ V ,
〈~x, ~y〉V = 〈~y, ~x〉V

2. (Bi-Linearity) For all ~x, ~y, ~z ∈ V and scalar c ∈ R,

〈~x, ~y + c~z〉V = 〈~x, ~y〉V + c〈~x, ~z〉V

and
〈~x+ c~y, ~z〉V = 〈~x, ~z〉V + c〈~y, ~z〉V
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3. (Positive-definite) For all ~x ∈ V ,
0 ≤ 〈~x, ~x〉V

and 0 = 〈~x, ~x〉V if and only if ~x = ~0.

Recall that an inner product lets us talk about angles.

Definition 3.2. Two vectors, ~x, ~y ∈ Rn are called orthogonal in Rn if

〈~x, ~y〉Rn = 0.

Recall, we can define the norm or magnitude of a vector in terms of the inner product,
by 〈~x, ~x〉Rn = |~x|2. In Rn this is just the Pythagorean Theorem.

Definition 3.3. Suppose that B = {~b1,~b2, , ...,~bn} is an orthogonal basis for Rn. Because it
is a basis, we know that for every ~x ∈ Rn, there exists a unique expression in the basis, B.
But, how do we find the coefficients, c1, c2, ..., cn such that ~x = c1,~b1 + c2

~b2 + ...+ cn~bn?

Answer: We use the inner product. We know that there exist some constants such that

~x = c1,~b1 + c2
~b2 + ...+ cn~bn

So, we can use the inner product and the fact that B is a collection of mutually orthogonal
vectors to get

〈~x,~b1〉Rn = 〈c1
~b1 + c2

~b2 + ...+ cn~bn,~b1〉Rn
〈~x,~b1〉Rn = c1〈~b1,~b1〉Rn + c2〈~b2,~b1〉Rn + ...+ cn〈~bn,~b1〉Rn
〈~x,~b1〉Rn = c1〈~b1,~b1〉Rn

Thus we have that

c1 =
〈~x,~b1〉Rn
〈~b1,~b1〉Rn

.

and, in general,

ci =
〈~x,~bi〉Rn
〈~bi,~bi〉Rn

.

So, we now know that for any ~x ∈ Rn and any orthogonal basis B,

~x =
〈~x,~b1〉Rn
〈~b1,~b1〉Rn

~b1 +
〈~x,~b2〉Rn
〈~b2,~b2〉Rn

~b2 + ...+
〈~x,~bn〉Rn
〈~bn,~bn〉Rn

~bn.

It is this structure which we wish to generalize to infinite dimensional vector
spaces.
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3.2 Infinite-dimensional vector spaces

In this class, we will be interested in a very specific family of infinite-dimensional vector
spaces.

Definition 3.4. For any interval, [a, b] ∈ Rn with a < b, we define the infinite-dimensional
vector space L2([a, b],R) as follows:

L2([a, b],R) = {f : [a, b]→ R |
∫ b

a

|f |2dx <∞}.

Note that vectors in this vector space are functions defined on the interval [a, b]. Because
of this, we will often refer to L2([a, b],R) as a function space, as well.

Whether a function is in L2([a, b],R) or not only depends upon what a function does on
the interval [a, b]. For example, consider the function f(x) = 1/x. It is easy to check that
f ∈ L2([1, 2],R), since ∫ 2

1

1

x2
dx ≤ 1

but f 6∈ L2([0, 2],R) since ∫ 2

0

1

x2
dx =

−1

x
|20 =∞.

Question 3.2: Is L2([a, b],R) really a vector space?

Answer: Yes. To see this, we need only check the definition of a vector space. We shall
leave the details to the reader, but it is easy to see that the sum of two functions is still a
function. Similarly with scalar multiplication. The zero vector is the zero function. And the
additive inverse of a vector, f , is simply −f .

Question 3.3: Do infinite-dimensional vector spaces have bases? What do they look
like?

Answer: Yes. All vector spaces have bases. However, for infinite-dimensional vector
spaces, sometimes these bases are essentially useless. This stems from our definition of a
basis. Recall that a basis, B, is a linearly independent collection of vectors such
that every vector can be expressed (uniquely) as a finite linear combination of
the vectors in B. So, consider the following example.
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Example 3.1. Consider `1(R) = {(x1, x2, ...) :
∑∞

i=1 xi <∞} the space of infinite stings
of real numbers which are square summable. It is left as an exercise to check that this is, in
fact, a vector space.

Based upon our intuitions of finite-dimensional vector spaces like Rn, we might guess
that if we let

~e1 = (1, 0, 0, ....)
~e2 = (0, 1, 0, ....)

...
~en = (0, 0, ...., 0, 1, 0, ...)

then, the collection B = {~e1, ~e2, ~e3, ...} might be a basis. But it isn’t. The only vectors which
are finite linear combinations of B are ones which have only finitely many non-zero entries.
But the vector

~x = (1,
1

2
,
1

3
,
1

4
, ...) ∈ `1(R).

Since ~x has infinitely many non-zero entries, it is not a finite linear combination of B.
There is a basis for `1(R), but it is essentially useless. Instead, we will use a different idea.

Definition 3.5. For a vector space, V , a countable basis is a collection of linearly inde-
pendent vectors, B such that every vector, ~v ∈ V , can be arbitrarily well-approximated by
finite linear combinations of B. More precisely, a countable basis is a collection of linearly
independent vectors, B = {~b1,~b2,~b3, ...} such that for every vector ~v ∈ V and every ε > 0,
there exists a finite linear combination of vectors in B such that

|~v −
N∑
i=1

ci~bi| < ε.

Note that in finite-dimensional vector spaces like Rn, a basis and a countable basis are
the same thing. However, in infinite-dimensional vector spaces, they are very different. Let’s
us return to our example.

Example 3.2. If we let
~e1 = (1, 0, 0, 0, ....)
~e2 = (0, 1, 0, 0, ....)
~e3 = (0, 0, 1, 0....)

...

then, the collection B = {~e1, ~e2, ~e3, ...} is a countable basis for the vector space `1(R) =
{(x1, x2, ...) :

∑∞
i=1 xi <∞}.

To see this, we remark that for any ~v ∈ `1(R) and any ε > 0 we can find an integer such
that if we write ~v = (v1, v2, ....), then

∞∑
i=N

vi < ε.
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Thus, |
∑N

i=1 vi~ei − ~v| < ε.

In this class, we will use countable bases to get a hold of infinite-dimensional vector
spaces.

Question 3.4: What is a countable basis for L2([a, b],R)?

Answer: As with all bases, there are infinitely many. However, in this class, we will
only deal with one, special countable basis. The collection of functions,

{cos(n 2π

b− a
x)}∞n=0 ∪ {sin(n

2π

b− a
x)}∞n=1

is a countable basis for the function space L2([a, b],R). We can think of it as a sort of
standard basis for L2([a, b],R).

This means that every function in L2([a, b],R) can be arbitrarily well-approximated by
finite linear combinations of sine and cosine functions. And, in some sense, for every
f ∈ L2([a, b],R) there exists an infinite linear combination such that

f(x) =
a0

2
+
∞∑
n=1

ancos(n
2π

b− a
x) + bnsin(n

2π

b− a
x)

Definition 3.6. The basis expression of a function, f ∈ L2([a, b],R) in terms of the basis
{cos(n 2π

b−ax)}∞n=0∪{sin(n 2π
b−ax)}∞n=1 is called the Fourier Series of f on the interval [a, b].

We will write it as

F[a,b](f)(x) =
a0

2
+
∞∑
n=1

ancos(n
2π

b− a
x) + bnsin(n

2π

b− a
x)

Question 3.5: Can we define an inner product on L2([a, b],R)?

Answer: Yes. Having an inner product is a special structure that cannot always be put
on infinite-dimensional spaces, but the spaces L2([a, b],R) do have an inner product.

Definition 3.7. We define the inner product on L2([a, b],R) as follows. For any two
functions (vectors), f, g ∈ L2([a, b],R),

〈f, g〉L2([a,b],R) =

∫ b

a

f(x)g(x)dx.
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Recall that with an inner product, we can define the norm or magnitude of a vector.
Thus, for a function (vector), f , in L2([a, b],R), we define it’s norm by

||f ||L2([a,b],R) = 〈f, f〉L2([a,b],R)1/2 = (

∫ b

a

|f |2dx)1/2

Thus, the condition in the definition of L2([a, b],R) about
∫ b
a
|f |2dx < ∞ is really a

condition that the norm of vectors be finite. That is, we only want to consider vectors for
which ||f ||L2([a,b],R) <∞

Question 3.6: Is the basis {cos(n 2π
b−ax)}∞n=0 ∪ {sin(n 2π

b−ax)}∞n=1 an orthogonal basis in
L2([a, b],R)?

Answer: Yes. This is left as a homework exercise.

Question 3.7: Given a function, f : [a, b]→ R, in L2([a, b],R) how do we find the basis
coefficients, {an}∞n=0 ∪ {bn}∞n=1 of F[a,b](f)?

Answer: As always, given an orthogonal basis, we find the basis coefficients by taking
the inner product with the basis element in question.

F[a,b](f)(x) = a0
2

+
∑∞

n=1 ancos(n
2π
b−ax) + bnsin(n 2π

b−ax)

〈F[a,b](f)(x), cos(n 2π
b−ax)〉L2([a,b],R) = 〈a0

2
+
∑∞

n=1 ancos(n
2π
b−ax) + bnsin(n 2π

b−ax), cos(n 2π
b−ax)〉L2([a,b],R)

〈F[a,b](f)(x), cos(n 2π
b−ax)〉L2([a,b],R) = a0

2
〈1, cos(n 2π

b−ax)〉L2([a,b],R)

+
∑∞

n=1 an〈cos(n
2π
b−ax), cos(n 2π

b−ax)〉L2([a,b],R)

+
∑∞

n=1 bn〈sin(n 2π
b−ax), cos(n 2π

b−ax)〉L2([a,b],R)

〈F[a,b](f)(x), cos(n 2π
b−ax)〉L2([a,b],R) = an〈cos(n 2π

b−ax), cos(n 2π
b−ax)〉L2([a,b],R)

Thus,

an =
〈F[a,b](f)(x), cos(n 2π

b−ax)〉L2([a,b],R)

〈cos(n 2π
b−ax), cos(n 2π

b−ax)〉L2([a,b],R)

Recalling that f = F[a,b](f) in the vector space L2([a, b],R) and the definition of the inner
product, we have the equivalent definition,

an =

∫ b
a
f(x)cos(n 2π

b−ax)dx∫ b
a
|cos(n 2π

b−ax)|2dx

Similarly, we have the formulae for the bn,

bn =
〈F[a,b](f)(x), sin(n 2π

b−ax)〉L2([a,b],R)

〈sin(n 2π
b−ax), sin(n 2π

b−ax)〉L2([a,b],R)
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or

bn =

∫ b
a
f(x)sin(n 2π

b−ax)dx∫ b
a
|sin(n 2π

b−ax)|2dx
.

Question 3.8: The denominators,
∫ b
a
|sin(n 2π

b−ax)|2dx and
∫ b
a
|cos(n 2π

b−ax)|2dx, seem com-
plicated and ugly. What are these?

Answer: Fortunately, for n 6= 0,∫ b

a

|sin(n
2π

b− a
x)|2dx =

∫ b

a

|cos(n 2π

b− a
x)|2dx =

b− a
2

.

When n = 0,
∫ b
a

1dx = b− a.
Thus, our formulae for the basis coefficients of F[a,b](f) become, for all an and bn

an =
2

b− a

∫ b

a

f(x)cos(n
2π

b− a
x)dx

bn =
2

b− a

∫ b

a

f(x)sin(n
2π

b− a
x)dx

These are called the Fourier-Euler equations.

Example 3.3. Let f : [0, 2π]→ R be defined piecewise by

f(x) =

{
1 x ∈ [0, π]

0 x ∈ (π, 2π]

Find F[0,2π](f)(x), explicitly.
First, is f ∈ L2([0, 2π],R)? We check from the definition:∫ 2π

0

|f |2dx <
∫ 2π

0

1dx ≤ 2π <∞.

So, f ∈ L2([0, 2π],R). Thus, we know that {cos(nx)}∞n=0 ∪ {sin(nx)}∞n=1 is an orthogonal,
countable basis for L2([0, 2π],R). So, we can find a basis expression for f

F[0,2π](f)(x) =
a0

2
+
∞∑
n=1

ancos(nx) + bnsin(nx)

where the coefficients are given by the Fourier-Euler formulae

an =
1

π

∫ 2π

0

f(x)cos(nx)dx
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bn =
1

π

∫ 2π

0

f(x)sin(nx)dx.

Thus, we need only calculate the coefficients. We begin with an.

an = 1
π

∫ 2π

0
f(x)cos(nx)dx

= 1
π
[
∫ π

0
f(x)cos(nx)dx+

∫ 2π

π
f(x)cos(nx)dx]

= 1
π

∫ π
0
cos(nx)dx

= 1
πn
sin(nx)|π0

= 0

Note that this integration only works for n > 0, so we must calculate a0 separately.

a0 = 1
π

∫ 2π

0
f(x)cos(0x)dx

= 1
π

∫ 2π

0
f(x)dx

= 1
π

∫ π
0

1dx
= 1

Now we calculate the bn

bn = 1
π

∫ 2π

0
f(x)sin(nx)dx

= 1
π
[
∫ π

0
f(x)sin(nx)dx+

∫ 2π

π
f(x)sin(nx)dx]

= 1
π

∫ π
0
sin(nx)dx

= −1
πn
cos(nx)|π0

= −1
πn

[1− (−1)n]

Plugging into our formula for the Fourier Series,

F[0,2π](f)(x) =
1

2
+
∞∑
n=1

−1

πn
[1− (−1)n]sin(nx).

3.3 What does F[a,b](f)(x) look like?

Question 3.9: Earlier, I said that “in some sense” f = F[a,b](f). In what sense?

Answer: There are two senses in which this this equality is funny. First, it is not true
that f(x) = F[a,b](f)(x) for all x ∈ [a, b]. But it is true that f = F[a,b](f) as vectors in
the vector space L2([a, b],R). That is, ||f −F[a,b](f)||L2([a,b],R) = 0. What does this mean?
It means that ∫ b

a

|f −F[a,b](f)|2dx = 0.

So, if we let G = {x ∈ [a, b] : f(x) = F[a,b](f)(x)} and B = {x ∈ [a, b] : f(x) 6= F[a,b](f)(x)},
then we can see that
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0 =
∫ b
a
|f −F[a,b](f)|2dx

=
∫
G
|f −F[a,b](f)|2dx+

∫
B
|f −F[a,b](f)|2dx

=
∫
B
|f −F[a,b](f)|2dx

Since we have no control over the difference, |f(x) − F[a,b](f)(x)|, all that we can say is
that the set, B, must be so small that integrals cannot see it. Later, we will be interested in
conditions on the function, f , such that we can control the bad set, B. But, for now, all we
can say is that it is invisible to integrals.

The other sense in which the equation, f = F[a,b](f), is strange is that since it is only
true in L2([a, b],R), it does not hold away from the interval [a, b]. For example, f may have
not been defined off the interval, [a, b]. On the other hand, no matter what f is away from
[a, b], F[a,b](f) is defined on all of R.

Question 3.10: What does F[a,b](f) look like outside of [a, b]?

Answer: Let’s write out F[a,b](f)(x) from the definition.

F[a,b](f)(x) =
a0

2
+
∞∑
n=1

ancos(n
2π

b− a
x) + bnsin(n

2π

b− a
x)

So, for x+ (b− a),

F[a,b](f)(x+ (b− a)) = a0
2

+
∑∞

n=1 ancos(n
2π
b−a(x+ (b− a))) + bnsin(n 2π

b−a(x+ (b− a)))

= a0
2

+
∑∞

n=1 ancos(n
2π
b−ax+ 2nπ)) + bnsin(n 2π

b−ax+ 2nπ)

= a0
2

+
∑∞

n=1 ancos(n
2π
b−ax) + bnsin(n 2π

b−ax)

= F[a,b](f)(x)

Thus, F[a,b](f)(x) = F[a,b](f)(x+ (b− a)) for all x ∈ R.

Definition 3.8. A function, f , is P−periodic, if f(x) = f(x+P ) for all x ∈ R, and P > 0
is the smallest such number for which is this true.

In this class, for ease we will ignore this last part, that P must be the smallest such
positive number. Thus we will say that F[a,b](f)(x) is (b− a)-periodic.

Question 3.11: Under what conditions can we say concretely that f(x) = F[a,b](f)(x)?
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Answer: In general, we have no idea for which x ∈ [a, b] f(x) = F[a,b](f)(x). In order
to say anything, we must make much stronger assumptions on the function f . In particular,
we will need both f and f ′ to be piecewise continuous.

Definition 3.9. A function, f : [a, b]→ R, is called piecewise continuous on [a, b] if we
can cut up the interval [a, b], into finitely many non-degenerate subintervals, [xi, xi+1], where

a = x0 < x1 < ... < xn−1 < xn = b

such that f is continuous on each subinterval, (xi, xi+1) and for each endpoint of each subin-
terval, limy→x±i

f(y) <∞.

Note that piecewise continuous functions can only have finitely many jump discontinu-
ities. A removable discontinuity violates the assumption that the partition of [a, b] must
be non-degenerate (i.e., that xi < xi+1). Vertical asymptotes violate the assumption that
limy→x±i

f(y) <∞.

Theorem 3.1. If a function f ∈ L2([a, b],R) is piecewise continuous and its derivative, f ′

is also piecewise continuous, then

F[a,b](f)(x) =
1

2
[limy→x+f(y) + limy→x−f(y)]

Note that if f is continuous at x ∈ [a, b], then these limits are the same and both equal
f(x). Thus, f(x) = F[a,b](f)(x).

Example: Consider the function f(x) = x2.

1. Describe F[0,1](f)(x).

Since F[0,1](f)(x) converges to f(x) = x2 in the interval [0, 1], f and f ′ are piece-wise
continuous on [0, 1], and F[0,1](f)(x) is 1-periodic, we know that

F[0,1](f)(x) =

{
x2 on (0, 1)
1
2

x = 1
F[0,1](f)(x) = F[0,1](f)(x+ 1)

where F[0,1](f)(1) = 1
2

because of Theorem 3.1. Try drawing this function yourself.

2. Describe F[−1,1](f)(x).

By the same reasoning, we have that

F[−1,1](f)(x) = x2 on [−1, 1], F[−1,1](f)(x) = F[−1,1](f)(x+ 2)

Try drawing this function yourself.
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3. Describe F[−1,3](f)(x).

Again, because F[−1,3](f)(x) converges to f(x) = x2 in the interval [−1, 3], f and f ′

are piece-wise continuous on [−1, 3], and F[−1,3](f)(x) is 4-periodic, we know that

F[−1,3](f)(x) =

{
x2 on (−1, 3)
10
2

x = 3
F[−1,3](f)(x) = F[−1,3](f)(x+ 4)

where F[0,1](f)(1) = 10
2

because of Theorem 3.1.

Try drawing this function yourself.

3.4 Even and Odd functions and Extensions

Note that in the examples above, where f(x) = x2, we saw that F[−1,3](f)(x) =
F[−1,1](f)(x) = F[0,1](f)(x) for all points x ∈ (0, 1). These three different Fourier
series, which all converge to different functions on R, all converge to the same
function on (0, 1).

Definition 3.10. Given a function, f : [a, b]→ R, we say that another function, f̃ : [c, d]→
R, is an extension of f to the interval [c, d] if

• The interval [a, b] is contained in the interval [c, d]. That is, c ≤ a and b ≤ d.

• For all points, x ∈ [a, b], the functions agree, f(x) = f̃(x)

What we saw in the above examples is that F[−1,3](f)(x),F[−1,1](f)(x), and F[0,1](f)(x)
are all extensions of the function f(x) = x2 restricted to the interval (0, 1).

Question 3.12: How are extensions of a function useful for Fourier Series?

Answer: Let’s suppose we have a function, f : [0, L] → R, in L2([0, L],R) such that
f, f ′ are piecewise continuous. We could choose to find the Fourier Series on [0, L], F[0,L](f).

Or, we could choose to extend the function, f , to a new function, f̃ , defined on a larger
interval, say, [−L,L]. Then we know that F[0,L](f) converges to f and F[−L,L](f̃) converges

to f̃ . Since f and f̃ are the same function on [0, L], then, we have that

F[0,L](f)(x) = F[−L,L](f̃)(x) ∀x ∈ (0, L)

Thus, we could choose ANY extension to ANY larger interval, and take the Fourier Series
on that interval. This Fourier Series would converge on the smaller interval to the function
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we extended. It turns out, by choosing a clever extension, we can make some
coefficients zero.

Recall the following definitions.

Definition 3.11. A function, f : [−a, a] → R, defined on a symmetric interval is called
even if

f(−x) = f(x)

and it is called odd if
f(−x) = −f(x)

for all x ∈ [−a, a].

Recall also that

• Products of even functions are even.

• The product of two odd functions is an even function.

• The product of an off function with an even function is an odd function.

• If f is odd, then ∫ a

−a
f(x)dx = 0

• If f is even ∫ a

−a
f(x)dx = 2

∫ a

0

f(x)dx

Question 3.12: So, what happens if we choose an odd extension? That is, if f : [0, L]→
R and we define an odd function, f odd : [−L,L]→ R by

f odd(x) =

{
f(x) [0, L]

−f(−x) [−L, 0]

what does F[−L,L](f
odd)(x) look like?

Answer: Well, to begin with, we use the formulas from the definition.

F[−L,L](f
odd)(x) =

a0

2
+
∞∑
n=1

ancos(n
π

L
x) + bnsin(n

π

L
x)

where the coefficients are given by the formulae

an =
1

L

∫ L

−L
f odd(x)cos(n

π

L
x)dx
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bn =
1

L

∫ L

−L
f odd(x)sin(n

π

L
x)dx.

But, since sine is an odd function and cosine is an even function, f odd(x)cos(nx) is an
odd function and f odd(x)sin(nx) is an even function. Thus, an = 0 for all n = 0, 1, 2, ....
This means we only need to compute the bn. Even better, because f odd(x)sin(n π

L
x) is an

even function, though, we can simplify the formula to

bn =
2

L

∫ L

0

f(x)sin(n
π

L
x)dx.

F[−L,L](f
odd)(x) is called the Fourier Sine Series of f .

Question 3.12: So, what happens if we choose an even extension? That is, if f : [0, L]→
R and we define an even function, f even : [−L,L]→ R by

f even(x) =

{
f(x) [0, L]

f(−x) [−L, 0]

what does F[−L,L](f
even)(x) look like?

Answer: Again, we use the formulas from the definition.

F[−L,L](f
even)(x) =

a0

2
+
∞∑
n=1

ancos(n
π

L
x) + bnsin(n

π

L
x)

where the coefficients are given by the formulae

an =
1

L

∫ L

−L
f even(x)cos(n

π

L
x)dx

bn =
1

L

∫ L

−L
f even(x)sin(n

π

L
x)dx.

But now, since f even(x)sin(n π
L
x) is odd, all of the bn = 0. And, since f even(x)cos(n π

L
x)

are even, the formulae for the an can be simplified to

an =
2

L

∫ L

0

f(x)cos(n
π

L
x)dx.

F[−L,L](f
even)(x) is called the Fourier Cosine Series of f .

Thus, in choosing a smart extension, we can simplified our work and only compute half
of the coefficients.
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Example 3.4. Let f =

{
L x ∈ [0, L]

x x ∈ (L, 2L]
. Give a Fourier Sine Series for f .

First, since we want a Sine Series, so we must take the odd extension of f . Then, we
have

F[−2L,2L](f
odd)(x) =

∞∑
n=1

bnsin(n
π

2L
x)

where

bn =
1

L

∫ 2L

0

f(x)sin(n
π

2L
x)dx.

Now, we compute the coefficients.

bn = 1
L

∫ 2L

0
f(x)sin(n π

2L
x)dx

= 1
L

∫ L
0
Lsin(n π

2L
x)dx+ 1

L

∫ 2L

L
xsin(n π

2L
x)dx

= −2
nπ
cos(n π

2L
x)|L0 + −2

nπ
xcos(n π

2L
x)|2LL + −2

nπ

∫ 2L

L
cos(n π

2L
x)dx

= −2
nπ

[cos(nπ
2
)− 1] + −2

nπ
[2L(−1)n − Lcos(nπ

2
)]

+ −L
nπ2 [−sin(nπ

2
)]

Plugging in, we have

F[−2L,2L](f
odd)(x) =

∞∑
n=1

[
−2

nπ
[cos(n

π

2
)−1]+

−2

nπ
[2L(−1)n−Lcos(nπ

2
)]+

L

nπ2
sin(n

π

2
)]sin(n

π

2L
x)

Reflection Questions

1. What does it mean for a function, g, to be an extension of a function, f?

2. What is the definition of an even function? of an odd function?

3. Let f : [0, L]→ R be given by f(x) = x.

a. Is f an even function, an odd function, or neither?

b. Draw two different even extensions of f .

c. Draw two different odd extensions of f .

d. In your own words, what steps would you take to find the Fourier Series of each
of the extensions of f , above?

e. Use Theorem 3.1, above, to draw the functions that those Fourier Series would
converge to.

4. Show that the product of an even function and an odd function is an odd function.

5. Is tan(x) a piece-wise continuous function?
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6. For any vector space, there are infinitely many bases. If we can find Fourier Sine series
and Fourier Cosine series for any function f ∈ L2([0, L],R), does that mean that both

{sin(n
π

L
x)}∞n=1 and {cos(nπ

L
x)}∞n=0

are each countable bases for L2([0, L],R)? How does this differ from the standard
orthogonal countable basis we have been using?
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4 Boundary Value Problems

Example 4.1.. Consider the differential equation

y′′ + λy = 0

on the domain [0, L] ⊂ R. What if we wanted to find all the solutions to this equation which
also satisfied the boundary conditions y(0) = 0 and y(L) = 0 for some fixed L > 0?

This looks similar to initial value problems, so let’s recall how we solve those: first,
we find the general solution to the differential equation, then we plug in to determine the
coefficients. Let’s try it.

First, we find the general solution to the differential equation. Note that this depends
upon the value of λ.

1. Case 1: λ < 0. Then the general solution is

y(t) = c1e
√
−λt + c2e

−
√
−λt

2. Case 2: λ = 0. In this case the general solution is

y(t) = c1t+ c2

3. Case 3: λ > 0. In this case, the general solution is

y(t) = c1cos(
√
λt) + c2sin(

√
λt)

Now, we compare our general solution with our boundary conditions. That is, we search
for constant c1, c2 such that y(t) satisfies y(0) = 0 and y(L) = 0.

1. Case 1: λ < 0. Checking the first endpoint, we see that

y(0) = c1 + c2 = 0

Thus, c1 = −c2. Checking the other endpoint, we have

y(L) = c1(e
√
−λL − e−

√
−λL) = 0.

Since L > 0, e
√
−λL > e−

√
−λL, and thus c1 = 0.

This means that for λ < 0, there are NO non-trivial solutions to this problem! Only
the zero function solves the problem.

2. Case 2: λ = 0. Checking the first endpoint,

y(0) = c2 = 0

Checking the second endpoint, we see that

y(L) = c1L = 0.

Therefore for λ = 0, the only solution is the trivial solution.
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3. Case 3: λ > 0. Checking the first endpoint,

y(0) = c1cos(
√
λ0) + c2sin(

√
λ0) = c1 = 0

Checking the second endpoint, we see that

y(L) = c2sin(
√
λL) = 0

This means that either c2 = 0 or sin(
√
λL) = 0. If c2 = 0, then x(t) is the zero function.

This is uninteresting. Notice that since the differential equation is homogeneous and
the boundary conditions are all zero, we always have the zero function as a solution.
On the other hand, sin(

√
λL) = 0 only if

√
λL = nπ for some integer n. That is, if

λ = n2π2

L2 , then

y(t) = c2sin(
nπ

L
t)

is a solution for any value of c2. This means that we would have infinitely many
solutions.

This is very different from initial value problems where we had one solution. These types
of problems are called Boundary Value Problems.

Definition 4.1. A boundary value problem (BVP) consists of three things:

1. a differential equation,

2. a domain, Ω,

3. and boundary conditions on the boundary of Ω.

Definition 4.2. A solution to a boundary value problem is a function, f : Ω → R,
such that

1. f is a solution to the differential equation in Ω,

2. f agrees with the boundary conditions on the boundary of Ω.

Returning to the previous example, observe that we can think of this problem as looking
for values of λ for which there are non-zero functions y which are scaled by the action of d2

dt2
,

d2

dt2
y = −λy

and satisfy the boundary conditions. In some sense, this is an eigenvalue problem.
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Definition 4.3. For any linear operator, L, a non-trivial function, y, which satisfies the
equation L(y) = λy is called an eigenfunction of the linear operator L. If such an eigen-
function exists, λ is called an eigenvalue of the linear operator L.

In the example above, d2

dt2
is our linear operator. This means that if y′′ + λy = 0 for a

non-zero function y, then −λ is an eigenvalue of the linear operator d2

dt2
. Since we can solve

y′′ + λy = 0 for any λ, the set of all eigenvalues of d2

dt2
is all of R. This is too large to deal

with for us in this class. So, we impose our boundary conditions.

Definition 4.4. Let L be a linear operator. A non-trivial function, y, which satisfies the
equation L(y) = λy AND satisfies the boundary conditions of a BVP is called an eigen-
function of the BVP. If such an eigenfunction exists, λ is called an eigenvalue of the
BVP.

In the example above, the only eigenvalues of the BVP were λ = −n2π2

L2 and the only
eigenfunctions were of the form y(t) = c2sin(nπ

L
t).

It is absolutely possible to ask if there is a “best basis” by which to view the action
of the linear operator d2

dt2
and find the (infinite) matrix which represents the action of the

linear operator d2

dt2
on the infinite dimensional vector space of twice-differentiable functions

on [0, L]. However, we will not make this approach explicit in this class.

We now return to investigating two-point BVP.

Example 4.2 A BVP need not have any solutions at all. If we consider the following
boundary value problem,

y′′ = 0

on the domain [0, L] ⊂ R with the boundary conditions y′(0) = 0 and y′(L) = 2.
The general solution to the differential equation is x(t) = c1t + c2. But, affine linear

functions have constant derivatives, so no affine linear function can satisfy the boundary
conditions.

Question 4.1: Do the set of solutions to boundary value problems have any structure?
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Answer: Yes. But, it is not as clean as we saw earlier for Initial Value Problems. First,
a few definitions.

Definition 4.5. A boundary value problem is called homogeneous if the boundary con-
ditions are zero and the differential equation is homogeneous. A boundary value problem is
called non-homogenous otherwise.

As usual, the structure of the set of solutions in the non-homogeneous case
depends upon the structure of the set of solutions for the corresponding homoge-
nous case. That is, a non-homogeneous boundary value problem may have no, a unique, or
infinitely many solutions. And, a homogeneous BVP always has at least the trivial solution,
but may have infinitely many solutions.

Theorem 4.1. (Structure of the set of solutions for BVP) A non-homogeneous BVP has
a unique solution if and only if the corresponding homogeneous BVP has only the trivial
solution. It has either no or infinitely many solutions if and only if the corresponding BVP
has infinitely many solutions.

4.1 Boundary Value Problems for the Heat Equation

The heat equation is of profound importance to the development of mathematics, physics,
and still drives a lot of research in modern math. We will study it in the following context:

Suppose that I made you this bet: I will take a metal wire of length, L, and
heat it up in some places so that there is some initial heat distribution on it. If
you can tell me what the heat distribution will be 10 minutes later, based only
on the initial heat distribution, then I will give you a 4.0 in the class.

Question 4.2: How would you model this problem using mathematics?

Answer: There are many answers to this question. But let’s begin with modeling the
wire. Let x represent the spatial dimension. Thus, we can think of the points x ∈ [0, L] as
representing points on our wire.

Now, let’s think of what we want: we want a function, u(x, t) such that u(x, t) tells us
how much heat is at the point x on our wire at time t. Thus, the domain of our function,
u(x, t), is the region [0, L]× [0,∞). The range, will be the real numbers, R.

How then would we describe the initial heat distribution? We want something that tells
us how much heat is at each point, x, on our wire at time, t = 0. Thus, we have the initial
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condition,
u(x, 0) = f(x).

Question 4.3: We need some way to describe how the heat in the wire will change as
time changes. How do we model heat diffusion?

Answer: The heat equation comes from the intuition that heat diffuses in all directions
equally. Using this intuition, we begin to model heat flow. For ease, let’s pretend that our
wire is a close system, so no heat leaves the wire, it just moves around inside it.

1. If the wire is all have the same amount of heat, then what do we expect?

The heat at each point diffuses equally in all directions. So each point, x, sends half of
its heat to the left and half to the right. But, at the same time, each point, x, receives
half of the heat from the points on the left and half of the heat from the points on the
right. If all the points have the same amount of heat, C, then the change of heat at
each point will be

−C +
1

2
C +

1

2
C = 0.

2. What must happen, then, at points where the temperature goes up?

Again, we start from the intuition that heat at each point diffuses equally in all direc-
tions. So if the temperature goes up at the point, x, then x must be receiving more
heat that it is giving. Thus, since sends half of its heat to the left and half to the right,
it looses all its heat, Cx But, x also receives half of the heat from the points on the
left, 1

2
CL, and half of the heat from the points on the right, 1

2
CR. Therefore, we can

approximate the change of heat at each point will be

−Cx +
1

2
CL +

1

2
CR > 0.

This means that Cx <
CL+CR

2
. That is, if the amount of heat at x increases,

then the amount of heat at x is below the average of the heat at the points
around it.

3. What must happen, then, at points where the temperature goes down?

Again, we start from the intuition that heat at each point diffuses equally in all direc-
tions. So if the temperature goes down at the point, x, then x must be losing more
heat that it is receiving. Thus, since sends half of its heat to the left and half to the
right, it looses all its heat, Cx But, x also receives half of the heat from the points on
the left, 1

2
CL, and half of the heat from the points on the right, 1

2
CR. Therefore, we

can approximate the change of heat at each point will be

−C +
1

2
CL +

1

2
CR < 0.

74



This means that C > CL+CR
2

. That is, if the amount of heat at x decreases,
then the amount of heat at x is above the average of the heat at the points
around it.

Note that this matches our intuition that if the temperature at a point, x, is below the
average temperature of the points around it, we expect the temperature at x to increase.
Conversely, if the temperature at x is above the average of the temperatures around it, we
expect the temperature at x to decrease.

The mathematical concept which captures this sense of ”above or below the local average”
is concavity. Concavity is determined by the second derivative.

The idea of change in time is captured by the derivative with respect to time.
Thus, we can rephrase our intuition by,

1. It the uxx = 0, then we expect ut = 0

2. It the uxx > 0, then we expect ut > 0

3. It the uxx < 0, then we expect ut < 0

There are many equations we could write which have these properties, but perhaps the
simplest is

Kuxx(x, t) = ut(x, t)

where K is a positive constant.
This is the heat equation. If we let ∂x represent the operator which takes a partial

derivative with respect to x and let ∂t represent the operator which takes a partial derivative
with respect to t, then we can do a little algebra and write the heat equation as

(K∂2
x − ∂t)u(x, t) = 0.

Let’s clean up what we have so far. We want a function, u(x, t) : [0, L] × [0,∞) → R
which satisfies the following conditions:{

(K∂2
x − ∂t)u(x, t) = 0 for all (x, t) ∈ (0, L)× (0,∞)

u(x, 0) = f(x) for x ∈ [0, L]

It turns out that this is not quite well-defined. I need to specify all of the conditions on
the boundary of the region [0, L]× [0,∞) in order for this problem to have a unique solution.
For ease, let’s set the side conditions to 0. That is, we are trying to solve the following
problem: 

(K∂2
x − ∂t)u(x, t) = 0 for all (x, t) ∈ (0, L)× (0,∞)

u(0, t) = 0 t > 0

u(L, t) = 0 t > 0

u(x, 0) = f(x) for x ∈ [0, L]

This is a Boundary Value Problem, because we are looking for a function, u, which solves
a differential equation on the region, (0, L) × (0,∞), and satisfies the boundary conditions
given above.
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Question 4.4: What is the structure of the set of solutions to the heat equation?

Answer: We answer this the exact same way that we did for linear systems of ODEs.
We rewrite the equation, Kuxx(x, t) = ut(x, t) as

(K∂2
x − ∂t)u(x, t) = 0.

Since (K∂2
x − ∂t) is a linear operator– it is left as an exercise to prove it from the

definition– the set of solutions to the heat equation form a vector space.

Question 4.5: How big of a vector space is it? And, how do we get a basis for that
vector space?

Answer: The vector space is VERY large. It is infinite dimensional, but is so large it
does not admit a countable basis. Therefore, we must use a different strategy.

Question 4.6: How do we solve BVP involving the heat equation?

Answer: The general strategy is the same as before: find a large enough family
of solutions to the heat equation and then compare them with the boundary
conditions. The process of comparing with the boundary conditions will reduce the family
of solutions we need to consider so that we can use basis methods developed during out
study of Fourier series.

Question 4.7: Ok, how do we find solutions to the heat equation? It is a PDE, and
PDEs are very hard.

Answer: PDEs are very hard. That is why we find solutions to the heat equation by
turning it into a pair of ODEs, which we can then solve easily. This trick is called Separation
of Variables. It is another example of assuming a solution has a particular form, plugging
it in to the differential equation, and seeing what comes out.

4.2 Separation of Variables

Assume that the function u(x, y) is a solution to the heat equation, Kuxx(x, t) = ut(x, t),.
Let us also assume that u(x, t) can be written as a product of functions,

u(x, t) = X(x)T (t).
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If u(x, t) = X(x)T (t) is a solution to the heat equation, then we can plug it in and get
that

KX ′′(x)T (t) = X(x)T ′(t).

Doing a little algebra to separate the variables, we then get that

X ′′(x)

X(x)
=

T ′(t)

KT (t)

for all points x and all times t. Since the left-hand side only depends upon x and the
right-hand side only depends upon t, they must be constant in Ω. That is, suppose that
X′′(x)
X(x)

= T ′(t)
KT (t)

were not constant on Ω = [0, L] × [0,∞). Then, there must be two different

points, (x1, t1), (x2t2) ∈ Ω for which either

T ′(t1)

KT (t1)
6= T ′(t2)

KT (t2)
.

or
X ′′(x1)

X(x1)
6= X ′′(x2)

X(x2)

But, if T ′(t1)
KT (t1)

= X′′(x)
X(x)

for any (x, t1) ∈ Ω and X′′(x)
X(x)

= T ′(t2)
KT (t2)

for any (x, t1) ∈ Ω, then since

both (x0, t1), (x0, t2) ∈ Ω for any x ∈ [0, L] it must be that

T ′(t1)

KT (t1)
=
X ′′(x0)

X(x0)
=

T ′(t2)

KT (t2)
.

Thus, this ratio must be constant on all of Ω. We write,

X ′′(x)

X(x)
=

T ′(t)

KT (t)
= −λ.

Now, we can turn these equations into two linear ODEs.

X ′′(x) + λX(x) = 0
T ′(t) + λKT (t) = 0

Linear ODEs are easy to solve (use 307 techniques). This is the power of separation of
variables: to turn a hard PDE into easy ODEs.

Separation of variables is a general strategy, and we will use it again for the wave equation
and the Laplace equation. Separation of variables does not work on every PDE, but it does
work on some very interesting PDEs which we will see in this class.

Now that Separation of variables has done its job, we can get solutions to the heat
equation by solving the ODEs, above. This reduces to three cases: when λ > 0, when λ < 0,
and when λ = 0.
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• Case 1: λ < 0.

Solving the temporal ODE, we get T (t) = ce−λKt. Solving the spatial ODE, we get
X(x) = ae

√
−λx + be−

√
−λx. Thus, for any λ < 0, we have the solution

uλ(x, t) = aλe
√
−λxe−λKt + bλe

−
√
−λxe−λKt

• Case 2: λ = 0.

Solving the temporal ODE, we get T (t) = c. Solving the spatial ODE, we get that
X(x) = ax+ b. Thus, we have the solution,

u0(x, t) = a0x+ b0.

• Case 3: λ > 0.

Solving the temporal ODE, we get T (t) = ce−λKt, as before. But, now, solving the
spatial ODE, we have X(x) = acos(

√
λx) + bsin(

√
λx). Thus, for any λ > 0, we have

the solution
uλ(x, t) = e−λKt(aλcos(

√
λx) + bλsin(

√
λx)).

The collection {uλ}λ∈R is our family of solutions to the heat equation. We
should think of it as like a basis for the set of all solutions, but just very, very large.

It would be very hard to try to find a linear combination of the {uλ} such that that
combination agreed with general boundary conditions. So, we must make our problem
easier.

Note that because of Separation of Variables, we have–in some sense– separated how some
solutions, uλ, behave in space and how they behave in time. In particular, if uλ = X(x)T (t)
and there is a point, x0 for which X(x0) = 0, then uλ(x0, t) = 0 for all t.

This leads to the idea that if we could impose very simple boundary conditions, like,{
u(0, t) = 0 for all t ≥ 0

u(L, t) = 0 for all t ≥ 0

then, our solution, u(x, t) could only involve uλ(x, t) = X(x)T (t) for X(x) which solve the
much simpler BVP,

X ′′(x) + λX(x) = 0; X(0) = 0 and X(L) = 0

Thus, by imposing very simple boundary conditions, we can reduce our problem to finding
eigenfunctions of a related 2-point BVP. If we can express our initial heat distribution as
a linear combination of these eigenfunctions, Xλ(x), then that linear combination of the
corresponding uλ(x, t) = Xλ(x)Tλ(t) will be our solution.
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4.3 Comparing with the Boundary Conditions

To compare this family of solutions with boundary conditions, we need to have some bound-
ary conditions. The general idea will be that because of the simple boundary
conditions we choose, we can reduce our problem to finding eigenfunctions of a
related BVP. These eigenfunctions will form a countable basis for the class of
functions we care about.

Example 4.3: Since the structure of the set of solutions to the homogeneous BVP deter-
mines the structure of the set of solutions to the corresponding non-homogeneous boundary
value problems, we investigate the homogeneous case:

Kuxx = ut in Ω = [0, L]× [0,∞)

u(0, t) = 0 for all t ≥ 0

u(L, t) = 0 for all t ≥ 0

u(x, 0) = 0 for x ∈ [0, L]

As mentioned at the end of last section, the collection of solutions {uλ}λ∈R is linearly
independent. So, if a uλ0 is non-zero on the boundaries, there is no non-trivial linear combi-
nation of the other uλ which can cancel it out. Thus, we reduce to only considering uλ
which satisfy the boundary conditions at the endpoints{

u(0, t) = 0 for all t ≥ 0

u(L, t) = 0 for all t ≥ 0

Because of Separation of Variables, this is equivalent to only considering uλ(x, t) =
Xλ(x)Tλ(t) for which Xλ(x) satisfies the following 2-point BVP,

X ′′(x) + λX(x) = 0; X(0) = 0 and X(L) = 0.

We check, as always, by plugging it in.

• Case 1: λ < 0.

Xλ(x) = aλe
√
−λx + bλe

−
√
−λx. Plugging into our boundary conditions, we have

a+ b = 0

a(e
√
−λL − e−

√
−λL) = 0

where we have used that a = −b from the first equation to simplify the second.

Since for all L > 0, we have that e
√
−λL > e−

√
−λL, it must be that a = 0. Thus, for all

λ < 0, no non-trivial uλ satisfy the boundary condition at infinity.

• Case 2: λ = 0.

X0(x, t) = a0x + b0. Plugging in to the end point conditions, we search for a0, b0 such
that
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b0 = 0

a0L+ b0 = 0

Thus, no non-trivial solutions exist. a0 = 0 = b0.

• Case 3: λ > 0.

Xλ(x, t) = aλcos(
√
λx) + bλsin(

√
λx). Plugging in the boundary conditions, we are

searching for non-zero constants a, b such that

acos(
√
λ0) + bsin(

√
λ0) = 0

acos(
√
λL) + bsin(

√
λL) = 0.

The first equation implies a = 0, which reduces the second equation to

bsin(
√
λL) = 0.

Since we are hoping that b 6= 0, we want to know when sin(
√
λL) = 0. This only

happens when
√
λL = nπ for some n ∈ Z. Thus, this only happens when λ = n2π2

L2 for
some n ∈ N.

Thus, the only λ for which non-trivial Xλ satisfy the 2-point BVP are when
λ = n2π2

L2 for some n ∈ N
We can enumerate these functions by n ∈ N and relabel them

Xn(x) = sin(n
π

L
x).

Question 4.8: Is {Xn} a countable basis for L2([0, L],R)?

Answer: Yes. A basis must span and be linearly independent. Since every function
in L2([0, L],R) has a Fourier Sine series, it can be written as a linear combination of the
functions {Xn}. This shows that {Xn} spans L2([0, L],R). It is a little trickier to show that
the collection {Xn} is linearly independent, because it is not an orthogonal basis. However,
for our purposes, this does not matter. We shall omit the proof.

Since {Xn} is a basis for L2([0, L],R), for every function, f ∈ L2([0, L],R), there exists
coefficients {bn}∞n=1 such that

f =
∞∑
n=1

bnsin(n
π

L
x).

If we let

un(x, t) = Xn(x)Tn(t) = e−
n2π2

L2 Ktsin(
nπ

L
x),
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then consider the function

u(x, t) =
∞∑
n=1

bnun(x, t) =
∞∑
n=1

bne
−n

2π2

L2 Ktsin(
nπ

L
x).

Question 4.9: Is u(x, t) =
∑∞

n=1 bnun(x, t) a solution to the heat equation?

Answer: Yes. solutions to the heat equation, (K∂2
x− ∂t)u(x, t) = 0, are functions in the

kernel of a linear operator, the set of solutions to the heat equation for a vector space. Thus,
the linear combination u(x, t) =

∑∞
n=1 bnun(x, t) is also a solution to the heat equation.

Question 4.10: Does u(x, t) =
∑∞

n=1 bnun(x, t) satisfy the boundary conditions?
u(0, t) = 0 for all t ≥ 0

u(L, t) = 0 for all t ≥ 0

u(x, 0) = f for x ∈ [0, L]

Answer: Let’s check! We begin with the condition u(0, t) = 0 for all t ≥ 0

u(0, t) =
∑∞

n=1 bnun(0, t)
=

∑∞
n=1 bnXn(0)Tn(t)

=
∑∞

n=1 bn0
= 0

Similarly, for the condition that u(L, t) = 0 for all t ≥ 0, we see that

u(L, t) =
∑∞

n=1 bnun(L, t)
=

∑∞
n=1 bnXn(L)Tn(t)

=
∑∞

n=1 bn0
= 0

To check the last condition, u(x, 0) = f for x ∈ [0, L], we plug in as always.

u(x, 0) =
∑∞

n=1 bnun(x, 0)

=
∑∞

n=1 bne
−n

2π2

L2 K0sin(nπ
L
x)

=
∑∞

n=1 bnsin(nπ
L
x)

= f(x)

because bn were chosen to be the Fourier Sine series coefficients of f .
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Therefore, if {bn} are the Fourier Sine series coefficients to F[−L,L](f
odd), then

u(x, t) =
∞∑
n=1

bne
−n

2π2

L2 Ktsin(
nπ

L
x)

is the solution to the BVP
(K∂2

x − ∂t)u(x, t) = 0 in Ω = [0, L]× [0,∞)

u(0, t) = 0 for all t ≥ 0

u(L, t) = 0 for all t ≥ 0

u(x, 0) = f(x) for x ∈ [0, L]

In this example, we are considering the homogeneous case, u(x, 0) = 0. All the Fourier
Sine series coefficients of 0 are 0. This means that there are no non-trivial solutions to
the homogeneous BVP with the heat equation. By our earlier statement, this
means non-homogeneous BVP will have unique solutions.

We now consider two simple non-homogeneous BVP for the heat equation.

Example 4.4: Find the solution to the following BVP.
(K∂2

x − ∂t)u(x, t) = 0 in Ω = [0, L]× [0,∞)

u(0, t) = 0 for all t ≥ 0

u(L, t) = 0 for all t ≥ 0

u(x, 0) = f(x) for x ∈ [0, L]

By exactly the same arguments as above, the solution to the problem is given by the
formula

u(x, t) =
∞∑
n=1

e−
n2π2

L2 Ktbnsin(
nπ

L
x))

where the coefficients are given by the formulae

bn =
2

L

∫ L

0

f(x)sin(
nπ

L
x)dx.

We now solve a slight variation of this type of problem.

Example 4.5: Find the solution to following BVP.
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
(K∂2

x − ∂t)u(x, t) = 0 in Ω = [0, L]× [0,∞)

u(0, t) = T1 for all t ≥ 0

u(L, t) = T2 for all t ≥ 0

u(x, 0) = f(x) for x ∈ [0, L]

Now, the endpoints are not zero. We could go back to our collection {uλ}λ∈R and compare
each of these with our new boundary conditions at the endpoints and infinity. But, there
is a smarter way to handle this problem. We instead split the given BVP into two related
BVP which we know how to solve.

Consider the two BVPs
(K∂2

x − ∂t)u(x, t) = 0 in Ω = [0, L]× [0,∞)

u(0, t) = T1 for all t ≥ 0

u(L, t) = T2 for all t ≥ 0

u(x, 0) = T1 − T2−T1
L

x for x ∈ [0, L]
(K∂2

x − ∂t)u(x, t) = 0 in Ω = [0, L]× [0,∞)

u(0, t) = 0 for all t ≥ 0

u(L, t) = 0 for all t ≥ 0

u(x, 0) = f(x)− T1 + T2−T1
L

x for x ∈ [0, L]

If we denote the solution to the first by uS(x, t) and the solution to the second by uT (x, t),
then I claim that uS + uT solves the original BVP. Let’s check.

(K∂2
x − ∂t)(uS(x, t) + uT (x, t)) = 0

in the region Ω = [0, L]× [0,∞) because solutions to the heat equation form a vector space.
Checking the boundary conditions, we see that

uS(0, t) + uT (0, t) = T1 + 0 = T1

uS(L, t) + uT (L, t) = T2 + 0 = T2

uS(x, 0) + uT (x, 0) = T1 − T2−T1
L

x+ f(x)− T1 + T2−T1
L

x = f(x)

The important thing about the condition at infinity is that our solutions remain bounded.
Since the sum of two bounded functions is bounded, uS +uT satisfies that condition, as well.
Thus, uS(x, t) + uT (x, t) is the unique solution to the given BVP. Now we just need to solve
for uS and uT .

By construction, we already know how to solve for uT by Example 1.

uT (x, t) =
∞∑
n=1

e−
n2π2

L2 Ktbnsin(
nπ

L
x))

where the coefficients are given by the formulae

bn =
2

L

∫ L

0

(f(x)− T1 +
T2 − T1

L
x)sin(

nπ

L
x)dx.
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To solve for uS, we observe that the the initial heat distribution, T1− T2−T1
L

x itself solves
the equation. Thus,

uS(x, t) = T1 −
T2 − T1

L
x

Definition 4.6. We call uS the steady-state solution because it does not depend upon t.
We call uT the transient solution, because as t→∞ the function uT (x, t) decays to zero.

Reflection Questions

1. What is the formula for the solution to the following BVP for the heat equation?
(K∂2

x − ∂t)u(x, t) = 0 in Ω = [0, L]× [0,∞)

u(0, t) = 0 for all t ≥ 0

u(L, t) = 0 for all t ≥ 0

u(x, 0) = f(x) for x ∈ [0, L]

2. Verify that the formula you gave satisfies the above BVP by plugging it into the
differential equation and checking the boundary conditions.

3. How did we arrive at the formula in 1., above? Describe the steps in your own words.

4. What is the formula for the solution to the following BVP for the heat equation?
(K∂2

x − ∂t)u(x, t) = 0 in Ω = [0, L]× [0,∞)

u(0, t) = T1 for all t ≥ 0

u(L, t) = T2 for all t ≥ 0

u(x, 0) = f(x) for x ∈ [0, L]

Which parts of the formula give the transient solution? Which parts give the steady-
state solution?

5. How did we arrive at the formulae in 3., above? What are the steps that we used?

6. Why are solutions to BVP for the heat equation unique?

7. What does it mean to be an eigenvalue of a linear operator?

8. What does it mean to be the eigenvalue of a BVP?

9. Do you think that {cos(n π
L
x)}∞n=0 is a countable basis for L2([a, b],R)?
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4.4 Other BVP for the heat equation

In this section, we consider different boundary value problems for the heat equation. In
the previous section, we considered heat conduction in a rod with the end-points held at
fixed temperatures. Now, we consider what happens if you insulate the end-points. To
model insulation, we assume that there is no heat flow our the end-points. Translating this
into mathematics, we assume that ∂xu(0, t) = 0 = ∂xu(L, t). Thus, the BVP that we shall
investigate is, 

(K∂2
x − ∂t)u(x, t) = 0 in Ω = [0, L]× [0,∞)

∂xu(0, t) = 0 for all t ≥ 0

∂xu(L, t) = 0 for all t ≥ 0

u(x, 0) = f(x) for x ∈ [0, L]

Because we have changed the type of boundary conditions, we must go back
and re-compare with our large family of solutions, {uλ}.

However, we can still use the same strategy as before: because our boundary conditions
are constant on the end points, the only uλ which will survive the comparison process will
be uλ = Xλ(x)Tλ(t) for which Xλ(x) satisfies

X ′′(x) + λX = 0; X ′(0) = 0, X ′(L) = 0.

That is, we can reduce to finding eigenfunctions of a two-point BVP. To find these
eigenfunctions, we find the general solution to the differential equation and then compare
with the boundary conditions.

• Case 1: λ < 0.

Xλ(x) = aλe
√
−λx + bλe

−
√
−λx. Plugging into our boundary conditions, we have

a(
√
−λ)− b(

√
−λ) = 0

a((
√
−λ)e

√
−λL − (

√
−λ)e−

√
−λL) = 0

where we have used that a = b from the first equation to simplify the second.

Since for all L > 0, we have that e
√
−λL > e−

√
−λL), it must be that a = 0. Thus,

λ < 0, is not an eigenvalue of the BVP because no non-trivial Xλ satisfy the BVP.

• Case 2: λ = 0.

X0(x, t) = a0x + b0. Plugging in to the end point conditions, we search for a0, b0 such
that

a0 = 0

a0 = 0

Thus, there are non-trivial solutions. X0(x) = b0 for any b0 is an eigenfunction of the
BVP associated to the eigenvalue, 0.
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• Case 3: λ > 0.

Xλ(x, t) = aλcos(
√
λx) + bλsin(

√
λx). Plugging in the boundary conditions, we are

searching for non-zero constants a, b such that

−a(
√
λ)sin(

√
λ0) + b(

√
λ)cos(

√
λ0) = 0

−a(
√
λ)sin(

√
λL) + b(

√
λ)cos(

√
λL) = 0.

The first equation implies b = 0, which reduces the second equation to

−a(
√
λ)sin(

√
λL) = 0.

Since we are hoping to find non-trivial solutions, let’s assume that a 6= 0. Therefore, we
are looking for when sin(

√
λL) = 0. Just as before, this only happens when

√
λL = nπ

for some n ∈ Z. Thus, λ = n2π2

L2 for some n ∈ N.

Thus the only λ for which non-trivial Xλ satisfy the 2-point BVP are when
λ = n2π2

L2 for some n ∈ N
We can enumerate these functions by n ∈ N and relabel them

Xn(x) = cos(n
π

L
x).

Question 4.11: Is {cos(n π
L
x)}∞n=0 a countable basis for L2([0, L],R)?

Answer: Yes. A basis must span and be linearly independent. Since every function in
L2([0, L],R) has a Fourier Cosine series, it can be written as a linear combination of the
functions {cos(n π

L
x)}∞n=0. This shows that {cos(n π

L
x)}∞n=0 spans L2([0, L],R). It is a little

trickier to show that the collection {cos(n π
L
x)}∞n=0 is linearly independent, because it is not

an orthogonal basis. We shall omit the proof, but it is a countable basis.

Since {cos(n π
L
x)}n is a countable basis for L2([0, L],R), for every function, f ∈ L2([0, L],R),

there exists coefficients such that

f =
a0

2
+
∞∑
n=1

ancos(n
π

L
x).

This is just F[−L,L](f
even). If we let

un(x, t) = Xn(x)Tn(t) = e−
n2π2

L2 Ktcos(
nπ

L
x),

then consider the function

u(x, t) =
a0

2
+
∞∑
n=1

anun(x, t) =
a0

2
+
∞∑
n=1

ane
−n

2π2

L2 Ktcos(
nπ

L
x).
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Question 4.12: Is u(x, t) = a0
2

+
∑∞

n=1 anun(x, t) a solution to the heat equation?

Answer: Yes. Because a solution to the heat equation, (K∂2
x− ∂t)u(x, t) = 0, is defined

by being in the kernel of a linear operator, the set of solutions to the heat equation forms a
vector space. Thus, the linear combination u(x, t) = a0

2
+
∑∞

n=1 anun(x, t) is also a solution
to the heat equation.

Question 4.13: Does u(x, t) = a0
2

+
∑∞

n=1 anun(x, t) satisfy the boundary conditions?
∂xu(0, t) = 0 for all t ≥ 0

∂xu(L, t) = 0 for all t ≥ 0

u(x, 0) = f for x ∈ [0, L]

Answer: Let’s check! We begin with the condition u(0, t) = 0 for all t ≥ 0

∂xu(0, t) =
∑∞

n=1 an∂xun(0, t)
=

∑∞
n=1 anX

′
n(0)Tn(t)

=
∑∞

n=1 an0
= 0

Similarly, for the condition that u(L, t) = 0 for all t ≥ 0, we see that

∂xu(L, t) =
∑∞

n=1 an∂xun(L, t)
=

∑∞
n=1 anX

′
n(L)Tn(t)

=
∑∞

n=1 an0
= 0

To check the last condition, u(x, 0) = f for x ∈ [0, L], we plug in as always.

u(x, 0) = a0
2

+
∑∞

n=1 anun(x, 0)

= a0
2

+
∑∞

n=1 ane
−n

2π2

L2 K0cos(nπ
L
x)

= a0
2

+
∑∞

n=1 ancos(
nπ
L
x)

= f(x)

because an were chosen to be the Fourier Cosine series coefficients of f .

That is, if {an} are the Fourier Cosine series coefficients to F[−L,L](f
even), then

u(x, t) =
a0

2
+
∞∑
n=1

ane
−n

2π2

L2 Ktcos(
nπ

L
x)
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is the solution to the BVP
(K∂2

x − ∂t)u(x, t) = 0 in Ω = [0, L]× [0,∞)

∂xu(0, t) = 0 for all t ≥ 0

∂xu(L, t) = 0 for all t ≥ 0

u(x, 0) = f(x) for x ∈ [0, L]

If we try to solve a BVP for the heat equation with boundary conditions of a more
complicated type, it gets very complicated. Sometimes it is possible, but sometimes it is too
difficult for the methods we using. We not consider any further BVP for the heat equation.

However, I will mention some very interesting properties of solutions to the heat equation.

1. Solutions to the heat equation are smooth. They have derivatives of all orders.

This should be somewhat surprizing, since the initial heat distributions, f , we consid-
ered could be discontinuous. But, no matter how discontinuous our boundary condi-
tions are, inside our region, the solutions are perfectly smooth.

To see this for the BVP for the heat equation that we considered, we need to recall
from the Fourier Series Conceptual Questions that there is a relationship between the
smoothness of a function, f , and how fast the Fourier Series coefficients of f decay to
zero. The more derivatives f has the faster the coefficients decay, and conversely, the
faster the Fourier coefficients decay, the more derivatives f must have. In our example,

u(x, t) =
∞∑
n=1

bnun(x, t) =
a0

2
+
∞∑
n=1

ane
−n

2π2

L2 Ktbncos(
nπ

L
x).

Thus, for any positive t > 0, the collection of “coefficents” looks like

ane
−n

2π2

L2 Kt.

Since n → ∞, these decay very, very fast. Thus, u(x, t) is a smooth function in x for
every t > 0.

2. In this model of heat diffusion, heat travels infinitely fast.

Obviously, this is kind of a problem. Nothing is supposed to move faster than the
speed of light. But in this model, heat moves at infinite speed. What does this mean?
It means that if we let our initial heat distribution be, say,

f(x) =


0 x ∈ [0, 1/3)

1 x ∈ [1/3, 2/3]

0 x ∈ (2/3, 1]

88



then the solution to
(K∂2

x − ∂t)u(x, t) = 0 in Ω = (0, 1)× (0,∞)

∂xu(0, t) = 0 for all t ≥ 0

∂xu(L, t) = 0 for all t ≥ 0

u(x, 0) = f(x) for x ∈ [0, 1]

will be strictly positive for all (x, t) ∈ Ω. This means that for any t > 0, some small
amount of heat would have traveled from the middle third to the ends. Thus, it must
be infinitely fast.

3. Solutions to BVP for the heat equation satisfy the Maximum Principle.

This means that
maxΩ|u(x, t)| = max∂Ω|u(x, t)|

This makes a lot of intuitive sense. We don’t want heat concentrating. This tells us
that the heat diffuses like we expect it to.

4. We can think of the heat equation as an evolution of a graph. That is, for each time,
t > 0, we can look at the time-slice u(x, t) = ut(x) as a function of x. Thus, we have
a family of functions, {ut(x)}t>0, As we let t → ∞, we can think of what happens to
the graphs of these functions. It turns out that this describes a way to reduce the arc
length of the graph in a “fastest” way.

4.5 The wave equation

In this section, we will consider BVP for the wave equation. That is, we imagine that we
have a string, which we give some initial position and some initial velocity – by, say, plucking
it– and we want to know how the string will vibrate as time goes on.

Question 4.14: How do we model this with mathematics?

Answer: We let x be the spatial variable. Suppose that our string is of length L > 0.
Let t represent time. Our region, then, is

Ω = [0, L]× [0,∞)

and we want a function, u(x, t) : [0, L]× [0,∞)→ R, which tells us the position of the point
x on the string at time t.

Our boundary conditions will be some conditions of the endpoints, say,{
u(0, t) = g0(t)

u(L, t) = gL(t)
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and functions which describe the initial displacement and initial velocity of the string,{
u(x, 0) = f(x)

∂tu(x, 0) = g(x)

The differential equation we will have will be the wave equation.

Question 4.15: What is the wave equation?

Answer: The wave equation is a Partial Differential Equation (PDE) which tries to
capture the behavior of waves. We expect waves to oscillate. That is, a particular point on
a string will fluctuate back and forth. If we think of concavity, it is not necessary that a
point at which the string is concave down will move down, but the forces will pull it down.
This means that the acceleration will be the same sign as the concavity. We assume that
the relationship is as simple as possible and express this in mathematics by the PDE,

α2∂2
xu(x, t) = ∂2

t u(x, t).

Question 4.16: What is the structure of the set of solutions to the wave equation?

Answer: As you might expect, we can re-write the wave equation as

(α2∂2
x − ∂2

t )u(x, t) = 0.

Thus, solutions are functions in the kernel of a linear operator. As we have seen, this means
that solutions form a vector space.

Question 4.17: How big is this vector space? Can we find a basis?

Answer: Just as for the heat equation, this vector space is very, very large. It has a
basis, but not a countable one. We will need to us the same tricks we used for the heat
equation to solve BVP for the wave equation.

Question 4.18: How do we solve the wave equation?

Answer: Just as in the heat equation, we assume very simple (constant) boundary
conditions that allow us to reduce a BVP for the wave equation to finding eigenfunctions for
a related two-point BVP.
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How did we do this? First, we used Separation of Variables to transform the linear PDE
into solvable linear ODEs. Solving these ODEs, we can generate a family of solutions, {uλ}.
By the linear independence of these solutions, we can reduce to comparing these solutions to
end-point conditions (i.e., reduce to solving for eigenfunctions of a two-point BVP). Then,
we use Fourier series to sum up the solutions to match the other boundary conditions. We
make this explicit, below.

Separation of Variables goes as follows, assume that u(x, t) = X(x)T (t) is a solution to
the wave equation. Then,

α2X ′′(x)T (t) = X(x)T ′′(t).

Doing a little algebra to separate the variables, we then get that

X ′′(x)

X(x)
=

T ′′(t)

α2T (t)

for all points x and all times t. Just as in the heat equation, since the left-hand side only
depends upon x and the right-hand side only depends upon t, they must be constant. Thus,
we write

X ′′(x)

X(x)
=

T ′′(t)

α2T (t)
= −λ

Now we can turn these equations into two linear ODEs.

X ′′(x) + λX(x) = 0
T ′′(t) + λα2T (t) = 0

Now, we solve these linear ODEs.

• Case 1: λ < 0.

Solving the temporal ODE, we get T (t) = aeα
√
−λt + be−α

√
−λt. Solving the spatial

ODE, we get X(x) = ce
√
−λx + de−

√
−λx. Thus, for any λ < 0, we have the solution

uλ(x, t) = (cλe
√
−λxe−λKt + dλe

−
√
−λx)(aλe

α
√
−λt + bλe

−α
√
−λt)

• Case 2: λ = 0.

Solving the temporal ODE, we get T (t) = at+ b. Solving the spatial ODE, we get that
X(x) = cx+ d. Thus, we have the solution,

u0(x, t) = (a0t+ b0)(c0x+ d0).

• Case 3: λ > 0.

Solving the temporal ODE, we get T (t) = acos(α
√
λt) + bsin(α

√
λt), as before. But,

now, solving the spatial ODE, we have X(x) = ccos(
√
λx)+dsin(

√
λx). Thus, for any

λ > 0, we have the solution

uλ(x, t) = (aλcos(α
√
λt) + bλsin(α

√
λt))(cλcos(

√
λx) + dλsin(

√
λx)).
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These three formulas give us a very large class of solutions to the wave equation.

Example 4.6. We consider the homogeneous case,

(α2∂2
x − ∂2

t )u(x, t) = 0 in Ω = [0, L]× [0,∞)

u(0, t) = 0 for all t ≥ 0

u(L, t) = 0 for all t ≥ 0

u(x, 0) = 0 for x ∈ [0, L]

∂tu(x, 0) = 0 for x ∈ [0, L]

By the linear independence of the solutions, uλ = XλTλ, above, we can determine that if
the solution to the BVP for the wave equation is a linear combination of the uλ then the uλ
which have non-zero coefficients must satisfy{

u(0, t) = 0 for all t ≥ 0

u(L, t) = 0 for all t ≥ 0

That is, u can only be a linear combination of uλ = XλTλ for Xλ which satisfy

X ′′(x) + λX(x) = 0; X(0) = 0, X(L) = 0

But, this is the same problem we solved for the heat equation. Thus, we know that the
only eigenfunctions of the two-point BVP are

Xn(x) = sin(n
π

L
x).

Thus, we have the family un(x, t) = sin(n π
L
x)(ancos(α

nπ
L
t)+bnsin(αnπ

L
t)).We can assume

that
u(x, t) =

∑∞
n=1 sin(n π

L
x)(ancos(α

nπ
L
t) + bnsin(αnπ

L
t))

Now we need to deal with our initial displacement and initial velocity conditions. We
plug in to check them.

0 = u(x, 0)
=

∑∞
n=1 sin(n π

L
x)(ancos(α

nπ
L

0) + bnsin(αnπ
L

0))
=

∑∞
n=1 ansin(n π

L
x)

By Fourier series results, we know that the coefficients in the Fourier Sine series of the
zero function are all zero. Thus, an = 0 for all n. Similarly,

0 = ∂tu(x, 0)
=

∑∞
n=1 sin(n π

L
x)(−anαnπL sin(αnπ

L
0) + bnα

nπ
L
cos(αnπ

L
0))

=
∑∞

n=1 bnα
nπ
L
sin(n π

L
x)

Again, this implies that bn = 0 for all n. Thus, the only solution to the homogeneous
equation is the trivial solution.
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Example 4.7. Find the solution to the following BVP,

(α2∂2
x − ∂2

t )u(x, t) = 0 in Ω = [0, L]× [0,∞)

u(0, t) = 0 for all t ≥ 0

u(L, t) = 0 for all t ≥ 0

u(x, 0) = f(x) for x ∈ [0, L]

∂tu(x, 0) = g(x) for x ∈ [0, L]

Since the end-point conditions are the same, by identical argument as before, we have
that

u(x, t) =
∞∑
n=1

sin(n
π

L
x)(ancos(α

nπ

L
t) + bnsin(α

nπ

L
t)).

To check against our initial displacement and initial velocity conditions, we simply plug
in.

f(x) = u(x, 0)
=

∑∞
n=1 sin(n π

L
x)(ancos(α

nπ
L

0) + bnsin(αnπ
L

0))
=

∑∞
n=1 ansin(n π

L
x)

Thus, {an} are the coefficients to F[−L,L](f
odd). That is, they are the Fourier Sine series

coefficients of f .
Checking our other condtition,

g(x) = ∂tu(x, 0)
=

∑∞
n=1 sin(n π

L
x)(−anαnπL sin(αnπ

L
0) + bnα

nπ
L
cos(αnπ

L
0))

=
∑∞

n=1 bnα
nπ
L
sin(n π

L
x)

Thus, {bnαnπL } are the coefficients to F[−L,L](g
odd). That is, they are the Fourier Sine

series coefficients of g.
Using our Fourier series formulae, then, we have that,

an =
2

L

∫ L

0

f(x)sin(n
π

L
x)dx

and,

bn =
2

αnπ

∫ L

0

g(x)sin(n
π

L
x)dx.

Example 4.8. Solve the following BVP.

(4∂2
x − ∂2

t )u(x, t) = 0 in Ω = [0, π]× [0,∞)

u(0, t) = 0 for all t ≥ 0

u(π, t) = 0 for all t ≥ 0

u(x, 0) = f(x) for x ∈ [0, π]

∂tu(x, 0) = g(x) for x ∈ [0, π]
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where f(x) =

{
x [0, π/2]

0 (π/2, π]
and g(x) = 2sin(2x)− 10sin(20x).

By the previous example, and our choice of α = 2 and L = π,we already know that the
solution, u(x, t) is given by the formulae,

u(x, t) =
∞∑
n=1

ansin(nx)cos(2nt) +
∞∑
n=1

bnsin(nx)sin(2nt).

where the coefficients {an} and {bn} satisfy the equations,

an =
2

π

∫ π

0

f(x)sin(nx)dx

and

bn =
2

2nπ

∫ π

0

g(x)sin(nx)dx.

Now we need only calculate the coefficients. We calculate the bn, first. Since g(x) is it’s
own Fourier Sine series, we can read off the coefficients,

b2 = 2, b20 = −10

and bn = 0 for all other n.
To calculate an, we must compute the integrals.

an = 2
π

∫ π
0
f(x)sin(nx)dx

= 2
π

∫ π/2
0

xsin(nx)dx

= −2
nπ
cos(nx)x|π/20 −

∫ π/2
0

−2
nπ
cos(nx)dx

= 2
n2π

sin(nx)|π/20

= 2
n2π

sin(nπ
2

)

Thus, the solution is

u(x, t) = 2sin(2x)sin(4t)− 10sin(20x)sin(40t) +
∞∑
n=1

2

n2π
sin(

nπ

2
)sin(nx)cos(2nt).

Question 4.19: What if we want to know the position of a certain point at a particular
time? How do we compute u(x, t)? These infinite series seem very ugly.

Answer: There is a different way to compute solutions to the wave equation, one which
is much easier to compute than these Fourier series methods we have been using. This other
way of getting solutions is called the method of characteristics.
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4.6 The method of characteristics

To get solutions to BVP for the wave equation using the method of characteristics, we will
use a familiar strategy. The method of characteristics itself will give us a large class of
solutions to the wave equation. Then, we use the boundary conditions to compare with the
solutions to determine the particular solution to the BVP.

As for the method of characteristics itself, it is another “guess and check” method. That
is, we guess the form of a solution and then plug it in to check what conditions
functions in that form must solve in order to be a solution. In this particular
instance, we assume that our solution, u(x, t), can be written as

u(x, t) = h(γ(x, t))

for some γ : [0, L] × [0,∞) → R and h : R → R. Let’s consider what this means. We are
assuming that there is a function, γ, such that the value of u(x, t) only depends upon the
level sets of γ. That is, if (x1, t1) and (x2, t2) are two points at two times such that

γ(x1, t1) = γ(x2, t2)

then
u(x1, t1) = h(γ(x1, t1))

= h(γ(x2, t2))
= u(x2, t2)

Thus, the position or height of a point at a given time only depends upon the level sets of γ.
Now, we plug in this guess and see what happens. If u(x, t) = h(γ(x, t)) is a solution to

the wave equation, then (α2∂2
x − ∂2

t )u = 0. Expanding this, we get that,

α2(h′′(γ(x, t))(∂xγ(x, t))2+h′(γ(x, t))∂2
xγ(x, t))−h′′(γ(x, t))(∂tγ(x, t))2+h′(γ(x, t))∂2

t γ(x, t)) = 0

Unlike separation of variables, we have not traded our PDE for a few ODE. Here, we
have taken a PDE and seemingly made it more complicated. However, here is where we
make an assumption about γ which will simplify things greatly.

What happens if γ(x, t) = a + bx + ct? If γ(x, t) = a + bx + ct, then all of it’s second
order partial derivatives are zero. Thus, our equation simplifies to,

α2h′′(γ(x, t))(∂xγ(x, t))2 − h′′(γ(x, t))(∂tγ(x, t))2 = 0

This is much easier to deal with. Since both terms have h′′ as a factor, we can rewrite
this as

α2(∂xγ(x, t))2 = (∂tγ(x, t))2

This is still a PDE, but since we have assumed that γ = a+ bx+ ct, we can simply plug
in and solve for the coefficients, a, b, c.

Since ∂xγ(x, t) = b and ∂tγ(x, t) = c, we simply have the equation,

α2b2 = c2

Since a can be anything, we choose a = 0 . Choosing b = 1 gives that γ(x, t) = x ± αt.
That is, both γ(x, t) = x+ αt and γ(x, t) = x− αt satisfy the equation.
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Thus, our large class of solutions are h(x+αt) and h(x−αt) for any twice-differentiable
function h. This is a very large class of solutions.

Question 4.20: How do the functions h(x+ αt) and h(x− αt) behave?

Answer: Of course, this depends upon the function h, but lets consider what happens
when we fix x. These functions describe a change of coordinates by translation. That is,

f(y) = h(x+ αt)

if y = x+αt. So, for any fixed t, the graph of h(x+αt) is the graph of h(x), but translated
to the left by αt.

Similarly, the graph of h(x+ αt) is the graph of h(x), but translated to the right by αt.

Question 4.21: Ok. How do we get solutions to a BVP for the wave equation, then?

Answer: As mentioned before, we need to compare solutions to the wave equation to
the boundary conditions. So, let’s get ourselves some boundary conditions.

Example 4.9: Let’s get solutions to the following BVP for the wave equation.

(α2∂2
x − ∂2

t )u(x, t) = 0 in Ω = [0, L]× [0,∞)

u(0, t) = 0 for all t ≥ 0

u(L, t) = 0 for all t ≥ 0

u(x, 0) = f(x) for x ∈ [0, L]

∂tu(x, 0) = 0 for x ∈ [0, L]

To compare with the boundary conditions of a BVP for the wave equation,
we assume that the solution is of the form

u(x, t) = h1(x+ αt) + h2(x− αt).

We now plug into the boundary conditions and get that h1(x± αt) must satisfy
h1(αt) + h2(−αt) = 0 for all t ≥ 0

h1(L+ αt) + h2(L− αt) = 0 for all t ≥ 0

h1(x) + h2(x) = f(x) for x ∈ [0, L]

α(h′1(x)− h′2(x)) = 0 for x ∈ [0, L]
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We begin with the last condition. Since h′1 = h′2, integrating each side, we see that

h1(x) = h2(x) + c

for x ∈ [0, L]. For convenience, we choose c = 0. By our next condition, though, we have
that h1(x) + h2(x) = f(x) for x ∈ [0, L]. Thus, substituting in, we see that

h1(x) = h2(x) =
1

2
f(x)

for x ∈ [0, L].
Our first condition, then, that h1(αt) + h2(−αt) = 0 for all t ≥ 0 tells us that

h2(−αt) = −1

2
f(αt).

Chasing this through, this means that both h1 and h2 are odd functions.
We consider the last condition, that h1(L+ αt) + h2(L− αt) = 0 for all t ≥ 0. We do a

change of variable, t = L+y
α

. This gives that,

h1(2L+ y) + h2(−y) = h1(2L+ y)− h1(y) = 0

Since this holds for all y, we have that h1 is 2L−periodic. Similarly, we can then show that
h2 must also be 2L−periodic.

Thus, h1 and h2 are the odd, 2L−periodic extensions of 1
2
f(x). Call this, f̃(x).

Thus, our solution, u(x, t), is given by the formula,

u(x, t) =
1

2
[f̃(x+ αt) + f̃(x− αt)].

This solution has a clear physical interpretation. The solution is the average of two copies
of the off, 2L−periodic extension of the initial displacement. One copy which travels left at
speed αt and one copy which travels right at speed αt. This captures the intuition that the
wave should travel in both directions and that the solution should be the sum of these wave
forms.

Example 4.10: Let’s get solutions to the following BVP for the wave equation.

(α2∂2
x − ∂2

t )u(x, t) = 0 in Ω = [0, L]× [0,∞)

u(0, t) = 0 for all t ≥ 0

u(L, t) = 0 for all t ≥ 0

u(x, 0) = 0 for x ∈ [0, L]

∂tu(x, 0) = g(x) for x ∈ [0, L]

97



We proceed by exactly the same process; we assume that u(x, t) = h1(x+αt)+h2(x−αt)
and then plug this into the boundary conditions. This gives that h1 and h2 must satisfy

h1(αt) + h2(−αt) = 0 for all t ≥ 0

h1(L+ αt) + h2(L− αt) = 0 for all t ≥ 0

h1(x) + h2(x) = 0 for x ∈ [0, L]

α(h′1(x)− h′2(x)) = g(x) for x ∈ [0, L]

Differentiating the third condition, h1(x) + h2(x) = 0, gives that h′1 + h′2 = 0. Plugging
this into the fourth condition, we see that

h′1(x) =
1

2α
g(x)

and

h′2(x) =
−1

2α
g(x)

for x ∈ [0, L]. Integrating, we have that for x ∈ [0, L],

h1(x) =
1

2α

∫ x

0

g(s)ds

and

h2(x) =
1

2α

∫ 0

x

g(s)ds.

Again, choosing t = L+x
α

in the second conditions give us

h1(2L+ x) + h2(x) = 0, ∀x ≥ 0.

Since h1(x) + h2(x) = 0, this implies that both h1 and h2 must be 2L−periodic.
The first condition, then, tells us that h1(x) and h2(x) are odd. These conditions force

us to extend g to be odd and 2L−periodic. Call this odd, 2L−periodic extension g̃. The
formula becomes,

u(x, t) = h1(x+ αt) + h2(x+ αt) =
1

2α

∫ x+αt

x−αt
g̃(s)ds

Example 4.11: Solve the following BVP,

(α2∂2
x − ∂2

t )u(x, t) = 0 in Ω = [0, L]× [0,∞)

u(0, t) = l1 for all t ≥ 0

u(L, t) = l2 for all t ≥ 0

u(x, 0) = f(x) for x ∈ [0, L]

∂tu(x, 0) = g(x) for x ∈ [0, L]
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We should view this BVP as really the sum of three different BVPs for the wave equation.
That is, if we let uL(x) be the solution to

(α2∂2
x − ∂2

t )u(x, t) = 0 in Ω = [0, L]× [0,∞)

u(0, t) = l1 for all t ≥ 0

u(L, t) = l2 for all t ≥ 0

u(x, 0) = l1 + (l2−l1)
L

x for x ∈ [0, L]

∂tu(x, 0) = 0 for x ∈ [0, L]

and uf (x, t) be the solution to

(α2∂2
x − ∂2

t )u(x, t) = 0 in Ω = [0, L]× [0,∞)

u(0, t) = 0 for all t ≥ 0

u(L, t) = 0 for all t ≥ 0

u(x, 0) = f(x)− l1 + (l2−l1)
L

x for x ∈ [0, L]

∂tu(x, 0) = 0 for x ∈ [0, L]

and ug(x, t) be the solution to

(α2∂2
x − ∂2

t )u(x, t) = 0 in Ω = [0, L]× [0,∞)

u(0, t) = 0 for all t ≥ 0

u(L, t) = 0 for all t ≥ 0

u(x, 0) = 0 for x ∈ [0, L]

∂tu(x, 0) = g(x) for x ∈ [0, L]

Then, just as for the heat equation, u(x, t) = uL(x) + uf (x, t) + ug(x, t). The previous
two examples gave equations for uf (x, t) and ug(x, t), respectively. To finish the solution, we
need only find uL(x).

However, just as in the heat equation, uL(x) = l1 + (l2−l1)
L

x satisfies the BVP. This
completes the solution for the wave equation by the method of characteristics.

Together, these formulae give what is called D’Alembert’s solution to BVP for the
wave equation.

Question 4.22: Do we need f and g to be twice-differentiable for D’Alembert’s solu-
tions?

Answer: We started off with the assumption for the method of characteristics that h
was twice differentiable. But, interestingly, the solutions that we found do not depend
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upon being able to differentiate f or g. Thus, we can extend these solutions to
non-differentiable functions. In fact, we can even extend these solutions to work
for discontinuous solutions!

Thus, D’Alembert’s solutions give us the solutions for even discontinuous initial displace-
ment and velocity functions.

Here are some interesting facts about the wave equation to contrast it from the heat
equation.

1. Solutions to the wave equation are not smooth.

This is easy to see from D’Alembert’s solution. If say u(x, t) = 1
2
[f̃(x+αt)+ f̃(x−αt)],

then we see that if f has a discontinuity, then so will f̃ . Therefore, this discontinuity
will simply be propagated left and right for eternity. There is no “improvement” of
the initial displacement and velocity functions.

We can also see this from the Fourier Series solutions. Recall from the Fourier Series
Conceptual Questions that there is a relationship between the smoothness of a function,
f , and how fast the Fourier Series coefficients of f decay to zero. The more derivatives
f has the faster the coefficients decay, and conversely, the faster the Fourier coefficients
decay, the more derivatives f must have. In our example, say,

u(x, t) =
∞∑
n=1

ansin(
nπ

L
x)cos(α

nπ

L
t).

Thus, for any positive t > 0, the collection of “coefficents” looks like

ancos(α
nπ

L
t).

So, if t = 2L
α

, then all the coefficient are the same as for t = 0. Thus, it is clear that we
cannot impose any rate of decay based upon t, since the coefficients merely oscillate in
t.

2. In this model of the wave diffusion, a wave travels travels at a finite speed. It does not
travel infinitely fast.

Again, this is easiest to see from D’Alembert’s solutions.

f(x) =


0 x ∈ [0, 1/3)

1 x ∈ [1/3, 2/3]

0 x ∈ (2/3, 1]

then the solution to

(∂2
x − ∂2

t )u(x, t) = 0 in Ω = [0, 1]× [0,∞)

∂xu(0, t) = 0 for all t ≥ 0

∂xu(1, t) = 0 for all t ≥ 0

u(x, 0) = f(x) for x ∈ [0, 1]

∂tu(x, 0) = 0 for x ∈ [0, 1]
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will be u(x, t) = 1
2
[f̃(x + t) + f̃(x− t)] for f̃ the odd, 2−periodic extension of f . The

point x = 1/6 on the string does not move until time t = 1/6. The wave takes that
long to get to it.

Reflection Questions:

1. Are solutions to the non-homogeneous BVP for the wave equation unique? Why?

2. What are the formulae for solving a BVP for the wave equation,

(α2∂2
x − ∂2

t )u(x, t) = 0 in Ω = [0, L]× [0,∞)

u(0, t) = l1 for all t ≥ 0

u(L, t) = l2 for all t ≥ 0

u(x, 0) = f(x) for x ∈ [0, L]

∂tu(x, 0) = g(x) for x ∈ [0, L]

using Fourier Series methods?

3. What are the formulae for solving a BVP for the wave equation,

(α2∂2
x − ∂t)u(x, t) = 0 in Ω = [0, L]× [0,∞)

u(0, t) = l1 for all t ≥ 0

u(L, t) = l2 for all t ≥ 0

u(x, 0) = f(x) for x ∈ [0, L]

∂tu(x, 0) = g(x) for x ∈ [0, L]

using the method of characteristics?

4. What are the steps that we used in the method of characteristics to get solutions to
the wave equation? Describe them in your own words.

5. What does it mean to be the eigenvalue of a linear operator? What does it mean to
be the eigenfunction of a linear operator? (This was in the beginning of section 4.)
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