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1. Day 5 Notes

Definition 1.1. For any bounded set X ⊂ Rn we define

dimM(X) = lim
r→0

log(Nx(r))

log(1/r)

Definition 1.2. For a function f : R → R we say that

lim
r→0

f(r) = a

if and only if for all 0 < ϵ there exists a 0 < δ such that if |0− ρ| < δ then |f(ρ)− a| ≤ ϵ.

2. Problem Set # 5

Sean’s note: These problems are significantly more challenging than previous Problem Sessions. I DO NOT

expect participants to be able to get very far without help.

I leave it up to you how to best conduct the session. Feel free to omit any problem you like.

2.1. Computation Problems. The Big Question in this section is:

Now that we have a new definition of “dimension,” how does it behave?

What is dimM of various sets?

(1) Fix 0 < α and let Eα be the set

Eα = { 1

nα
: n ∈ N}.

Determine dimM(Eα).
Sean’s note: dimM(Eα) =

1
1+α

We must calculate the n beyond which the balls Br(n
−α) and Br((n + 1)−α) are connected. Then,

we need to count the number of Br required to cover the remaining points.

Step 1: Find the largest n ∈ N such that

1

nα
− 1

(n+ 1)α
≥ r.

We calculate

1

nα
− 1

(n+ 1)α
=

(n+ 1)α − nα

(n+ 1)αnα
.

Now, for very small r we see that we may take n very large. And, for large n

(n+ 1)α − nα ∼= (nα + α(n)α−1 + α(α− 1)nα−2)− nα

∼= Cα(
1

n
)1−α

for large n.

1
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Thus, we need to estimate

Cα( 1
n
)1−α

(n+ 1)αnα
=

Cα

(n+ 1)αn
≥ r.

Equivalently, Cα
r

≥ n(n+ 1)α.

Now, we estimate that for large n, n(n+ 1)α ∼= n1+α, whence we estimate

Cαr ≳ n1+α

implies that n ≲ ( 1
r
)

1
1+α . Thus, the largest such n is roughly n ∼= ( 1

r
)

1
1+α .

Step 2: We now need to estimate the number of Br balls required to cover { 1
nα : n ≥ ( 1

r
)

1
1+α }.

Note that for n = ( 1
r
)

1
1+α

1

nα
∼= r

α
α+1 .

Therefore, the diameter of the set { 1
nα : n ≥ ( 1

r
)

1
1+α } is r

α
α+1 . Therefore, to cover this set with balls Br

requires at least

r
α

α+1

r
= r−

1
α+1 = (

1

r
)

1
α+1 .

Step 3: Therefore we estimate that for 0 < r sufficiently small NE(r) ∼= ( 1
r
)

1
α+1 + ( 1

r
)

1
α+1 .

Thus, we calculate

log(NE(r))

log(1/r)
∼=

1
α+1

log(1/r)

log(1/r)
=

1

α+ 1

Since all the estimate become more accurate as r → ∞, we obtain the answer.

(2) This problem concerns the famous Cantor middle third set. This set is constructed

as follows.

Let I0 = [0, 1]. Now, assume that Ii has been defined. Define Ii+1 the

be what remains after removing the middle 1/3 interval from all the line

segments in Ii.

Let C(1/3) be the limit of this process. Determine dimM(C(1/3)). What if,

instead of the middle 1/3, we remove the middle 1/7? What is the dimension of

the resulting set?
Sean’s note: Covering C(1/3) by balls of radii ri =

1
3i

we see that we require 2i many such balls.

Now, we need to estimate i as a function of r

ri =
1

3i
→ i =

log(1/ri)

log(3)
.

Thus, NC(1/3)(ri) ∼= 2i = 2
log(1/ri)

log(3) . Therefore, we observe that

lim
r→0

log(NC(1/3)(ri))

log(1/ri)
= lim

r→0

log(2
log(1/ri)

log(3) )

log(1/ri)

= lim
r→0

log(1/ri)

log(3)

log(2)

log(1/ri)
=

log(2)

log(3)
< 1.

If we follow these calculations for C(1/7) we obtain NC(1/7)(r) ∼= 2
log(1/r)

log(7)−log(3) and hence

lim
r→0

log(NC(1/7)(r))

log(1/r)
= lim

r→0

log(2
log(1/r)

log(7)−log(3) )

log(1/r)

= lim
r→0

log(1/r)

log(7)− log(3)

log(2)

log(1/r)
=

log(2)

log(7)− log(3)
.

(3) In class, we saw the following theorem.
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Theorem. For every 0 ≤ s ≤ n there exists a set X ⊂ Rn such that

dimM(X) = s.

Use 1), 2) to verify the theorem.
Sean’s note: There are several ways to tackle this problem. The easiest way is probably the

following.

Step 1: let s = k + α for k ∈ N and α ∈ [0, 1).

Step 2: Use (1) or (2) to obtain a set E of dimM(E) = α.

Step 3: Now form E × Rk.

(4) Try to construct a set X ⊂ Rn where dimM(X) does not exist. It may help to

think about Computational Problem 2).
Sean’s note: This one is probably too complicated for participants to do in any rigor. The BIG

IDEA is to vary the size of intervals we remove in the Cantor construction. By removing middle thirds,

we obtain a sequence of r such that

log(NX(r))

log(1/r)
∼=

log(2)

log(3)
.

Then, remove middle sevenths for a sequence of scales until

log(NX(r))

log(1/r)
∼=

log(2)

log(7)− log(3)
.

Repeat this, alternating as needed so that limr→0
log(NX (r))
log(1/r)

does not exist.

2.2. Exploration Problems. The Big Question is:

How do we modify the definition of dimM to produce a new definition of

“dimension” which

• Only depends upon the local properties of a set.

• Exists for all subsets X ⊂ Rn.

If may help to consider the usual model spaces (R1,R2,R3,S1) to develop intuition.

Once you come up with a new notion of dimension, what does it say the dimension of

X = {0} ∪ {1/n : n ∈ N} is?
Sean’s note: This is an open-ended exploration, and I would like people who participate in it to focus on

the joy of exploration. But there are several definitions of “dimension” which participants can be guided towards.

Definition 2.1. (Assouad Dimension) For a non-empty set X ⊂ Rn, we can define

dimA(X) = inf{α :there exists a constant 0 < C such that,

for all 0 < r < R and x ∈ X

NX∩BR(x)(r) ≤ C(
R

r
)α}.

Or, an even more local version:

Definition 2.2. (Assouad-Nigata Dimension) For a non-empty set X ⊂ Rn, we can define

dimA,loc(X) = inf{α :there exists a constant 0 < C, 0 < ρ such that,

for all 0 < r < R ≤< ρ and x ∈ X

NX∩BR(x)(r) ≤ C(
R

r
)α}.
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These notions of dimension always exists but may disagree for unbounded sets!

dimA(N) = 1 and dimA,loc(N) = 0.

They are a kind of local upper Minkowski dimension. There are obvious corresponding local lower Minkowski

dimensions.

Definition 2.3. (Lower Dimension or “minimal dimension number”) For a non-empty set X ⊂ Rn, we can define

dimL(X) = sup{α :there exists a constant 0 < C such that,

for all 0 < r < R ≤ diam(X) and x ∈ X

NX∩BR(x)(r) ≥ C(
R

r
)α}.

These definitions look like they are local. But it depends upon the local behavior of the worst point x ∈ X.

For example, if we let X = {0} ∪ {1/n : n ∈ N},

dimM(X) = 1/2, dimA(X) = dimA,loc(X) = dimL(X) = 1.

This comes from the behavior around {0}.
Alternatively, we can define a “local version of Minkowski dimension” by chopping our set up.

Definition 2.4. (Packing Dimension) For any set X ⊂ Rn, we define

dimP (X) = inf{dimM(Ei) : X = ∪∞
i Ei}

where the infimum is taken over all decompositions X = ∪∞
i Ei.

This definition is local and gives us the desired result that dimP ({0} ∪ {1/n : n ∈ N}) = 0. But, it depends

upon dimM, so it may or may not exist.
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